Molecular signature of an ancient organizer regulated by Wnt/β-catenin signalling during primary body axis patterning in Hydra

[1]  Y. Wenger,et al.  Generic and context-dependent gene modulations during Hydra whole body regeneration , 2019, bioRxiv.

[2]  J. Ryan,et al.  Sponges Lack ParaHox Genes , 2019, Genome biology and evolution.

[3]  Leonardo Beccari,et al.  An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra , 2019, Nature Communications.

[4]  J. A. Farrell,et al.  Stem cell differentiation trajectories in Hydra resolved at single-cell resolution , 2018, Science.

[5]  Josephine C. Adams,et al.  Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction , 2018, Scientific Reports.

[6]  J. Poulain,et al.  The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle , 2018, bioRxiv.

[7]  T. Holstein,et al.  Making head or tail of cnidarian hox gene function , 2018, Nature Communications.

[8]  A. Tanay,et al.  Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq , 2018, Cell.

[9]  M. Martindale,et al.  Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation , 2018, Nature Communications.

[10]  Jian Wang,et al.  WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update , 2018, Nucleic Acids Res..

[11]  M. Martindale,et al.  Reengineering the primary body axis by ectopic cWnt signaling , 2018, Current Biology.

[12]  S. Leys,et al.  Wnt signaling and polarity in freshwater sponges , 2018, BMC Evolutionary Biology.

[13]  U. Technau,et al.  β-Catenin acts in a position-independent regeneration response in the simple eumetazoan Hydra. , 2018, Developmental biology.

[14]  K. Zhang,et al.  Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis , 2017, Proceedings of the National Academy of Sciences.

[15]  S. Sokol,et al.  Wnt proteins can direct planar cell polarity in vertebrate ectoderm , 2016, eLife.

[16]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[17]  S. Galande,et al.  Evolution of Hox-like genes in Cnidaria: Study of Hydra Hox repertoire reveals tailor-made Hox-code for Cnidarians , 2015, Mechanisms of Development.

[18]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[19]  David A. Eccles,et al.  Β-catenin-dependent control of positional information along the AP body axis in planarians involves a teashirt family member. , 2015, Cell reports.

[20]  H. Schmidt,et al.  Nodal signalling determines biradial asymmetry in Hydra , 2014, Nature.

[21]  Erich Bornberg-Bauer,et al.  DoMosaics: software for domain arrangement visualization and domain-centric analysis of proteins , 2014, Bioinform..

[22]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[23]  V. Marchesano,et al.  Hymyc1 Downregulation Promotes Stem Cell Proliferation in Hydra vulgaris , 2012, PloS one.

[24]  D. Stefanik,et al.  Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  Salil S. Bidaye,et al.  Genome-wide screening reveals the emergence and divergence of RTK homologues in basal Metazoan Hydra magnipapillata , 2011, Journal of Biosciences.

[26]  Yukio Nakamura,et al.  Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer , 2011, Proceedings of the National Academy of Sciences.

[27]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[28]  J. Mullikin,et al.  Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi , 2010, EvoDevo.

[29]  S. Leys,et al.  Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer , 2010, Evolution & development.

[30]  G. Richards,et al.  Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica , 2010, Evolution & development.

[31]  Shuji Takahashi,et al.  Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos , 2010, Evolution & development.

[32]  Benjamin M. Wheeler,et al.  The dynamic genome of Hydra , 2010, Nature.

[33]  Peter W. Reddien,et al.  Wnt Signaling and the Polarity of the Primary Body Axis , 2009, Cell.

[34]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[35]  Oleg Simakov,et al.  Multiple Wnts are involved in Hydra organizer formation and regeneration. , 2009, Developmental biology.

[36]  Bert Hobmayer,et al.  Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra , 2009, Proceedings of the National Academy of Sciences.

[37]  P. Wincker,et al.  Are Hox Genes Ancestrally Involved in Axial Patterning? Evidence from the Hydrozoan Clytia hemisphaerica (Cnidaria) , 2009, PloS one.

[38]  M. Martindale,et al.  Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi , 2008, Development Genes and Evolution.

[39]  C. Lowe Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  R. Northcutt,et al.  Conserved pattern of OTP-positive cells in the paraventricular nucleus and other hypothalamic sites of tetrapods , 2008, Brain Research Bulletin.

[41]  J. Finnerty,et al.  Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[42]  J. Mullikin,et al.  The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis , 2006, Genome Biology.

[43]  H. Bode,et al.  Formation of the head organizer in hydra involves the canonical Wnt pathway , 2005, Development.

[44]  J. Joly,et al.  Regulatory gene expressions in the ascidian ventral sensory vesicle: evolutionary relationships with the vertebrate hypothalamus. , 2005, Developmental biology.

[45]  E. D. De Robertis,et al.  Dorsal-ventral patterning and neural induction in Xenopus embryos. , 2004, Annual review of cell and developmental biology.

[46]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[47]  J. Finnerty,et al.  Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone , 2004, Science.

[48]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[49]  E. Lander,et al.  Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.

[50]  Scott Barolo,et al.  Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. , 2002, Genes & development.

[51]  Hans Meinhardt,et al.  The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[52]  Christoph M. Happel,et al.  WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra , 2000, Nature.

[53]  H. Bode,et al.  CnOtx, a member of the Otx gene family, has a role in cell movement in hydra. , 1999, Developmental biology.

[54]  H. Bode,et al.  HyBra1, a Brachyury homologue, acts during head formation in Hydra. , 1999, Development.

[55]  H. Bode,et al.  Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra. , 1997, Developmental biology.

[56]  H. Bode,et al.  CnNK-2, an NK-2 homeobox gene, has a role in patterning the basal end of the axis in hydra. , 1996, Developmental biology.

[57]  R. Harland,et al.  The Spemann Organizer Signal noggin Binds and Inactivates Bone Morphogenetic Protein 4 , 1996, Cell.

[58]  H. Steinbeisser,et al.  β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos , 1996, Mechanisms of Development.

[59]  C. Freund,et al.  Guidebook to the Homeobox Genes , 1995 .

[60]  J. M. W. Slack,et al.  The zootype and the phylotypic stage , 1993, Nature.

[61]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[62]  G. W. Tannreuther THE DEVELOPMENT OF HYDRA , 1908 .

[63]  R. Kirubagaran,et al.  Description and phylogenetic characterization of common hydra from India , 2011 .

[64]  S. Xiao,et al.  On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. , 2009, Trends in ecology & evolution.

[65]  B. Thisse,et al.  High-resolution in situ hybridization to whole-mount zebrafish embryos , 2007, Nature Protocols.

[66]  James W. Valentine,et al.  On the Origin of Phyla , 2004 .

[67]  A. Simeone,et al.  The role of Otx and Otp genes in brain development. , 2000, The International journal of developmental biology.

[68]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .