Advanced methods and algorithm for high precision astronomical imaging. (Méthodes et algorithmes avancés pour l'imagerie astronomique de haute précision)

One of the biggest challenges of modern cosmology is to gain a more precise knowledge of the dark energy and the dark matter nature. Fortunately, the dark matter can be traced directly through its gravitational effect on galaxies shapes. The European Spatial Agency Euclid mission will precisely provide data for such a purpose. A critical step is analyzing these data will be to accurately model the instrument Point Spread Function (PSF), which the focus of this thesis.We developed non parametric methods to reliably estimate the PSFs across an instrument field-of-view, based on unresolved stars images and accounting for noise, undersampling and PSFs spatial variability. At the core of these contributions, modern mathematical tools and concepts such as sparsity. An important extension of this work will be to account for the PSFs wavelength dependency.

[1]  Yu-Jin Zhang,et al.  Nonnegative Matrix Factorization: A Comprehensive Review , 2013, IEEE Transactions on Knowledge and Data Engineering.

[2]  Jean-Luc Starck Sparsity and inverse problems in astrophysics , 2016 .

[3]  Emmanuel Bertin,et al.  The Dark Energy Survey data processing and calibration system , 2012, Other Conferences.

[4]  Richard L. Baer,et al.  A model for dark current characterization and simulation , 2006, Electronic Imaging.

[5]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[6]  Martin Charlton,et al.  Geographically weighted principal components analysis , 2011, Int. J. Geogr. Inf. Sci..

[7]  Fionn Murtagh,et al.  Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis, Second Edition , 2015 .

[8]  Bhuvnesh Jain,et al.  Principal Component Analysis of PSF Variation in Weak Lensing Surveys , 2004 .

[9]  David Hall,et al.  An improved model of charge transfer inefficiency and correction algorithm for the Hubble Space Telescope , 2014, 1401.1151.

[10]  Nikos Paragios,et al.  Handbook of Mathematical Models in Computer Vision , 2005 .

[11]  Laurent Jacques,et al.  A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity , 2011, Signal Process..

[12]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[13]  R. Scaramella,et al.  I. Weak lensing analysis with LBC , 2010 .

[14]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[15]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[16]  M. Lampton,et al.  Lensing Systematics from Space: Modeling PSF effects in the SNAP survey , 2007 .

[17]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[18]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[19]  Gabriel Peyré,et al.  Manifold models for signals and images , 2009, Comput. Vis. Image Underst..

[20]  Rémi Gribonval,et al.  Should Penalized Least Squares Regression be Interpreted as Maximum A Posteriori Estimation? , 2011, IEEE Transactions on Signal Processing.

[21]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[22]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[23]  L. Kantorovich On the Translocation of Masses , 2006 .

[24]  R. Wawrzaszek,et al.  PSF modelling for very wide-field CCD astronomy , 2013, 1302.0145.

[25]  Ann B. Lee,et al.  Treelets--An adaptive multi-scale basis for sparse unordered data , 2007, 0707.0481.

[26]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[27]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[28]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[29]  K L Baker,et al.  Iteratively weighted centroiding for Shack-Hartmann wave-front sensors. , 2007, Optics express.

[30]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[31]  Gabriel Peyré,et al.  Fast Optimal Transport Averaging of Neuroimaging Data , 2015, IPMI.

[32]  Gabriele Steidl,et al.  Homogeneous Penalizers and Constraints in Convex Image Restoration , 2013, Journal of Mathematical Imaging and Vision.

[33]  Ivan Markovsky,et al.  Structured low-rank approximation and its applications , 2008, Autom..

[34]  J. Starck,et al.  CMB reconstruction from the WMAP and Planck PR2 data , 2015, 1511.08690.

[35]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[36]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[37]  Simon Haykin,et al.  The chirplet transform: physical considerations , 1995, IEEE Trans. Signal Process..

[38]  W. Clem Karl,et al.  3.6 – Regularization in Image Restoration and Reconstruction , 2005 .

[39]  Michael Elad,et al.  A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur , 2001, IEEE Trans. Image Process..

[40]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[41]  É. Bertin Automated Morphometry with SExtractor and PSFEx , 2011 .

[42]  Zaïd Harchaoui,et al.  Fast and Robust Archetypal Analysis for Representation Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Gabriel Peyré,et al.  Wasserstein barycentric coordinates , 2016, ACM Trans. Graph..

[44]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[45]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[46]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[47]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[48]  A. Stewart Fotheringham,et al.  Principal Component Analysis on Spatial Data: An Overview , 2013 .

[49]  A. JouanD Speckle Filtering of Sar Images -a Comparative Study between Complex-wavelet-based and Standard Filters , 1997 .

[50]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[51]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[52]  Gabor T. Herman,et al.  Basic methods of tomography and inverse problems , 1987 .

[53]  Andriyan Bayu Suksmono Reconstruction of Complex-Valued Fractional Brownian Motion Fields Based on Compressive Sampling and Its Application to PSF Interpolation in Weak Lensing Survey , 2013, ArXiv.

[54]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[55]  Michael Unser,et al.  Variational Phase Imaging Using the Transport-of-Intensity Equation , 2016, IEEE Transactions on Image Processing.

[56]  G. Meylan,et al.  Interpolating point spread function anisotropy , 2012, 1210.2696.

[57]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[58]  Sabine Van Huffel,et al.  Multi-sparse signal recovery for compressive sensing , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[59]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[60]  P. Schechter,et al.  Telescope Optics and Weak Lensing: PSF Patterns due to Low Order Aberrations , 2008, 0810.0027.

[61]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[62]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[63]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[64]  Javier Portilla,et al.  Non-convex sparse optimization through deterministic annealing and applications , 2008, 2008 15th IEEE International Conference on Image Processing.

[65]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[66]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[67]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[68]  J. Y. Wang,et al.  Wave-front interpretation with Zernike polynomials. , 1980, Applied optics.

[69]  Gaël Varoquaux,et al.  Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity , 2011, IPMI.

[70]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[71]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[72]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[73]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[74]  W. Gangbo,et al.  Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .

[75]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[76]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[77]  Y. Mellier,et al.  Euclid: Mapping the Geometry of the Dark Universe , 2012 .

[78]  Felix Hueber,et al.  Hyperspectral Imaging Techniques For Spectral Detection And Classification , 2016 .

[79]  Dominikus Noll,et al.  Restoration of Degraded Images with Maximum Entropy , 1997, J. Glob. Optim..

[80]  Martin J. Wainwright,et al.  Early stopping for non-parametric regression: An optimal data-dependent stopping rule , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[81]  J. Goodman Introduction to Fourier optics , 1969 .

[82]  Jean-Luc Starck,et al.  Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors , 2011, 1103.2213.

[83]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[84]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[85]  P. Sabatier,et al.  Inverse Problems in Quantum Scattering Theory , 1977 .

[86]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[87]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[88]  C. Mackay,et al.  L3CCD’s: Low Readout Noise CCDs in Astronomy , 2004 .

[89]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[90]  R. Scaramella,et al.  Abell 611 - I. Weak lensing analysis with LBC , 2010, 1002.0727.

[91]  L. Zanni,et al.  Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes , 2012, 1210.2258.

[92]  L. Eon Bottou Online Learning and Stochastic Approximations , 1998 .

[93]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[94]  Lei Zhu,et al.  An Image Morphing Technique Based on Optimal Mass Preserving Mapping , 2007, IEEE Transactions on Image Processing.

[95]  Joshua B. Tenenbaum,et al.  Mapping a Manifold of Perceptual Observations , 1997, NIPS.

[96]  Hsin-Cheng Huang,et al.  Regularized Principal Component Analysis for Spatial Data , 2015, 1501.03221.

[97]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[98]  Michael Elad,et al.  Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model , 2013, IEEE Transactions on Signal Processing.

[99]  Ivan Dokmanic,et al.  Euclidean Distance Matrices: A Short Walk Through Theory, Algorithms and Applications. , 2015 .

[100]  J. Gower Adding a point to vector diagrams in multivariate analysis , 1968 .

[101]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[102]  Christopher Hirata,et al.  OPTIMAL LINEAR IMAGE COMBINATION , 2011, 1105.2852.

[103]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[104]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[105]  Qiuming Cheng Spatial and Spatially Weighted Principal Component Analysis for Images Processing , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[106]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[107]  M. Sirianni,et al.  Principal Component Analysis of the Time- and Position-dependent Point-Spread Function of the Advanced Camera for Surveys , 2007, 0710.5560.

[108]  David L. Donoho,et al.  Image Manifolds which are Isometric to Euclidean Space , 2005, Journal of Mathematical Imaging and Vision.

[109]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[110]  R. Massey,et al.  Polar Shapelets , 2004, astro-ph/0408445.

[111]  C. Villani Topics in Optimal Transportation , 2003 .

[112]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[113]  Shunsuke Ono,et al.  Two variants of alternating direction method of multipliers without certain inner iterations and their application to image super-resolution , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[114]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[115]  Alexander Wong,et al.  Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates , 2015, Scientific reports.

[116]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[117]  Bob L. Sturm,et al.  Detection and estimation of arrivals in room impulse responses by greedy sparse approximation , 2010, 2010 18th European Signal Processing Conference.

[118]  Mohamed-Jalal Fadili,et al.  Astronomical Image Denoising Using Dictionary Learning , 2013, ArXiv.

[119]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[120]  I. V. Oseledets,et al.  Fast multidimensional convolution in low-rank formats via cross approximation , 2014 .

[121]  Patrick L. Combettes,et al.  A forward-backward view of some primal-dual optimization methods in image recovery , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[122]  Bernard Widrow,et al.  Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications , 2008 .

[123]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[124]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[125]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[126]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[127]  M. Nikolova Model distortions in Bayesian MAP reconstruction , 2007 .

[128]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[129]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[130]  Fionn Murtagh,et al.  Starlet Transform in Astronomical Data Processing , 2015, Handbook of Mathematical Methods in Imaging.

[131]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[132]  Andy M. Yip,et al.  Total Variation Image Restoration: Overview and Recent Developments , 2006, Handbook of Mathematical Models in Computer Vision.

[133]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[134]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[135]  P. Hansen The truncatedSVD as a method for regularization , 1987 .

[136]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[137]  A. Little Estimating the Intrinsic Dimension of High-Dimensional Data Sets: A Multiscale, Geometric Approach , 2011 .

[138]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[139]  祐介 日和崎 Stephane Mallat, "A Wavelet Tour of Signal Processing (2nd edition)," Academic Press, 1999(私のすすめるこの一冊,コーヒーブレーク) , 2006 .

[140]  Michael Elad,et al.  Image Denoising Via Learned Dictionaries and Sparse representation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[141]  A. Amara,et al.  Point spread function calibration requirements for dark energy from cosmic shear , 2007, 0711.4886.

[142]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[143]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[144]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[145]  A. Penzias,et al.  A Measurement of excess antenna temperature at 4080-Mc/s , 1965 .

[146]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[147]  H. Hopf,et al.  Ueber den Begriff der vollständigen differentialgeometrischen Fläche , 1931 .

[148]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[149]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[150]  Hugues Talbot,et al.  A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood , 2015, SIAM J. Imaging Sci..

[151]  M. Maggioni,et al.  Multi-scale geometric methods for data sets II: Geometric Multi-Resolution Analysis , 2012 .

[152]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[153]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[154]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[155]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[156]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[157]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[158]  J. Amiaux,et al.  Defining a weak lensing experiment in space , 2012, 1210.7691.

[159]  David Zhang,et al.  A Survey of Sparse Representation: Algorithms and Applications , 2015, IEEE Access.

[160]  Mohamed-Jalal Fadili,et al.  Group sparsity with overlapping partition functions , 2011, 2011 19th European Signal Processing Conference.

[161]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[162]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[163]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[164]  Alexandre Bernardino,et al.  Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition , 2013, 2013 IEEE International Conference on Computer Vision.

[165]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[166]  Julien Rabin,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.