Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies

We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we findmore » that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to a counter-intuitive effect, making the power of the lensing signal in this model lower by 10% than in the ΛCDM scenario. Moreover, we compare the behaviour of CDM and baryons in CoDECS separately, in order to isolate effects coming from the coupling with the DE component. We find that, in the bouncing scenario, baryons show an opposite trend with respect to CDM, due to the coupling of the latter with the DE component. These results confirm the relevance of CMB lensing as a probe for DE at the early stages of cosmic acceleration, and demonstrate the reliability of N-body based large scale CMB lensing simulations in the context of DE studies.« less

[1]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[2]  G. W. Pratt,et al.  Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.

[3]  Radek Stompor,et al.  High-precision simulations of the weak lensing effect on cosmic microwave background polarization , 2013, 1303.6550.

[4]  L. Amendola,et al.  How early is early dark energy , 2013, 1301.5279.

[5]  L. Moscardini,et al.  Characterizing dark interactions with the halo mass accretion history and structural properties , 2013, 1301.3151.

[6]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[7]  Joop Schaye,et al.  Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling , 2012, 1210.7303.

[8]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[9]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[10]  M. Baldi Dark Energy Simulations , 2012, 1210.6650.

[11]  R. Tascone,et al.  A coherent polarimeter array for the Large Scale Polarization Explorer (LSPE) balloon experiment , 2012, Other Conferences.

[12]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars , 2012, 1207.4543.

[13]  L. Amendola,et al.  Constraints on coupled dark energy using CMB data from WMAP and South Pole Telescope , 2012, 1207.3293.

[14]  M. Lueker,et al.  A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE , 2012, 1203.4808.

[15]  Adrian T. Lee,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA , 2012, 1202.0546.

[16]  Adrian T. Lee,et al.  An Overview of the SPTpol Experiment , 2012 .

[17]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRU:VI , 2011 .

[18]  E. Copeland,et al.  Coupled Quintessence and the Halo Mass Function , 2011, 1103.0694.

[19]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[20]  L. Moscardini,et al.  Clustering and redshift-space distortions in interacting dark energy cosmologies , 2011, 1110.3045.

[21]  M. Baldi The codecs project: a publicly available suite of cosmological N-body simulations for interacting dark energy models , 2011, 1109.5695.

[22]  M. Baldi Early massive clusters and the bouncing coupled dark energy , 2011, 1107.5049.

[23]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[24]  Edward J. Wollack,et al.  Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. , 2011, Physical review letters.

[25]  C. Baccigalupi,et al.  Constraints on primordial non-Gaussianity from large scale structure probes , 2011, 1104.5015.

[26]  Edward J. Wollack,et al.  Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.

[27]  Jonas Zmuidzinas,et al.  Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V , 2016 .

[28]  M. Baldi Clarifying the effects of interacting dark energy on linear and non‐linear structure formation processes , 2010, 1012.0002.

[29]  J.-L. Starck,et al.  Measuring the integrated Sachs-Wolfe effect , 2010, 1010.2192.

[30]  M. Viel,et al.  The impact of coupled dark energy cosmologies on the high-redshift intergalactic medium , 2010, 1007.3736.

[31]  R. O'Brient,et al.  The POLARBEAR CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[32]  Per Friberg,et al.  Extinction correction and on-sky calibration of SCUBA-2 , 2010, Astronomical Telescopes + Instrumentation.

[33]  V. Pettorino,et al.  High-z massive clusters as a test for dynamical coupled dark energy , 2010, 1006.3761.

[34]  M. Baldi Time-dependent couplings in the dark sector: from background evolution to non-linear structure formation , 2010, 1005.2188.

[35]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[36]  L. Colombo,et al.  Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy , 2009, 0902.2711.

[37]  C. Baccigalupi,et al.  Lensed CMB temperature and polarization maps from the Millennium Simulation , 2008, 0810.4145.

[38]  Simon Prunet,et al.  Full-sky weak-lensing simulation with 70 billion particles , 2008, 0807.3651.

[39]  V. Pettorino,et al.  Hydrodynamical N-body simulations of coupled dark energy cosmologies , 2008, 0812.3901.

[40]  C. Baccigalupi,et al.  Full-sky maps for gravitational lensing of the cosmic microwave background , 2008 .

[41]  M. Trodden,et al.  Constraining Interactions in Cosmology's Dark Sector , 2008, 0808.1105.

[42]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[43]  C. Baccigalupi,et al.  Coupled and extended quintessence: Theoretical differences and structure formation , 2008, 0802.1086.

[44]  Adam D. Myers,et al.  Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.

[45]  Shirley Ho,et al.  Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.

[46]  M. Halpern,et al.  Spider Optimization: Probing the Systematics of a Large-Scale B-Mode Experiment , 2007, 0710.0375.

[47]  C. V. D. Bruck,et al.  New interactions in the dark sector mediated by dark energy , 2007, 0709.2297.

[48]  C. Baccigalupi,et al.  Full-sky maps for gravitational lensing of the cosmic microwave background , 2007, 0711.2655.

[49]  F. Castander,et al.  The onion universe: all sky lightcone simulations in spherical shells , 2007, 0711.1540.

[50]  Kendrick M. Smith,et al.  Cosmological information from lensed CMB power spectra , 2006, astro-ph/0607315.

[51]  Kendrick M. Smith,et al.  Supernovae, Lensed CMB and Dark Energy , 2006, astro-ph/0607316.

[52]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[53]  A. Cooray,et al.  The Born and lens–lens corrections to weak gravitational lensing angular power spectra , 2006, astro-ph/0601226.

[54]  C. Baccigalupi,et al.  Dark energy records in lensed cosmic microwave background , 2005, astro-ph/0507644.

[55]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[56]  A. Lewis Lensed CMB simulation and parameter estimation , 2005, astro-ph/0502469.

[57]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[58]  L. Amendola Phantom energy mediates a long-range repulsive force. , 2004, Physical review letters.

[59]  Keitaro Takahashi,et al.  D-braneworld cosmology. II. Higher order corrections , 2003, hep-th/0310059.

[60]  A. Kosowsky The Atacama Cosmology Telescope , 2003, astro-ph/0402234.

[61]  P. Peebles,et al.  Interacting Dark Matter and Dark Energy , 2003, astro-ph/0307316.

[62]  U. Seljak,et al.  Reconstruction of lensing from the cosmic microwave background polarization , 2003, astro-ph/0306354.

[63]  V. Pettorino,et al.  Coupled quintessence and the coincidence problem , 2002, astro-ph/0212518.

[64]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[65]  Jérôme Martin,et al.  Quintessence with two energy scales , 2001, hep-ph/0104240.

[66]  Jérôme Martin,et al.  Quintessence and supergravity , 1999, astro-ph/9905040.

[67]  A. Liddle,et al.  A Classification of scalar field potentials with cosmological scaling solutions , 1998, astro-ph/9809272.

[68]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[69]  U. Seljak,et al.  A complete treatment of CMB anisotropies in a FRW universe , 1997, astro-ph/9709066.

[70]  M. Kamionkowski,et al.  Statistics of cosmic microwave background polarization , 1996, astro-ph/9611125.

[71]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[72]  C. Wetterich The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.