Bubbles on the cutting edge : direct numerical simulations of gas-liquid-solid three-phase flows

Abstract Gas–liquid–solid three phase flows are encountered in for example the Fischer–Tropsch process for the production of synthetic fuels in bubble slurry columns. To predict the hydrodynamics in large slurry bubble columns a multi-scale modeling approach can be used, which accounts for the large variation in time and length scales. In this paper, the smallest scale model has been developed using the Front Tracking model of Dijkhuizen et al. (2010b) and the Immersed Boundary model of Kriebitzsch (2011) . In the Front Tracking model, each bubble is tracked separately. Furthermore, the Immersed Boundary method introduces the particle–fluid and the particle–particle (via a hard sphere model) interactions in the model. The resulting hybrid Front Tracking Immersed Boundary model is able to simulate dense three-phase flows and accounts for swarm effects in a fundamental manner. From our simulations we found that the relative drag coefficient of bubbles in three-phase flows seems to increase with increasing solids volume fraction. However, longer averaging periods are needed to derive a fully predictive correlation for the relative drag coefficient with respect to the solid volume fraction.

[1]  R. Lahey,et al.  Computation of incompressible bubble dynamics with a stabilized finite element level set method , 2005 .

[2]  David J. Torres,et al.  The point-set method: front-tracking without connectivity , 2000 .

[3]  H. C. Simpson Bubbles, drops and particles , 1980 .

[4]  F. Durst,et al.  Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows , 2006 .

[5]  Martin van Sint Annaland,et al.  Drag force and clustering in bubble swarms , 2013 .

[6]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[7]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[8]  Albert Renken,et al.  Bubble columns staged with structured fibrous catalytic layers: Residence time distribution and mass transfer , 2001 .

[9]  Yuichi Murai,et al.  Experimental detection of bubble–bubble interactions in a wall-sliding bubble swarm , 2004 .

[10]  Z. Feng,et al.  Proteus: a direct forcing method in the simulations of particulate flows , 2005 .

[11]  N. Cheremisinoff,et al.  Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. , 1976 .

[12]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[13]  Anthony J. Robinson,et al.  On the analysis of bubble growth and detachment at low Capillary and Bond numbers using Volume of Fluid and Level Set methods , 2013 .

[14]  J. Mostaghimi,et al.  A volume-of-fluid interfacial flow solver with advected normals , 2010 .

[15]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[16]  Wouter Dijkhuizen Deriving closures for bubbly flows using direct numerical simulations , 2008 .

[17]  Stefan Heinrich,et al.  Direct numerical simulation of particle impact on thin liquid films using a combined volume of fluid and immersed boundary method , 2012 .

[18]  Howard H. Hu Direct simulation of flows of solid-liquid mixtures , 1996 .

[19]  Jam Hans Kuipers,et al.  Numerical simulation of behavior of gas bubbles using a 3‐D front‐tracking method , 2006 .

[20]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[21]  Ng Niels Deen,et al.  Direct Numerical Simulation of Fluid Flow and Mass Transfer in Dense Fluid–Particle Systems , 2013 .

[22]  Dieter Bothe,et al.  Influence of surface tension models on the hydrodynamics of wavy laminar falling films in Volume of Fluid-simulations , 2012 .

[23]  Ng Niels Deen,et al.  Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method , 2009 .

[24]  J.A.M. Kuipers,et al.  On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers , 2011 .

[25]  Michio Nishioka,et al.  Measurements of velocity distributions in the wake of a circular cylinder at low Reynolds numbers , 1974, Journal of Fluid Mechanics.

[26]  B. Boersma,et al.  An efficient multiple marker front-capturing method for two-phase flows , 2012 .

[27]  Yong Li,et al.  Numerical studies of bubble formation dynamics in gas-liquid-solid fluidization at high pressures , 2001 .

[28]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[29]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[30]  Markus Bussmann,et al.  Height functions for applying contact angles to 3D VOF simulations , 2009 .

[31]  Jam Hans Kuipers,et al.  DNS of gas bubbles behaviour using an improved 3D front tracking model-Drag force on isolated bubbles and comparison with experiments , 2010 .

[32]  Gihun Son,et al.  EFFICIENT IMPLEMENTATION OF A COUPLED LEVEL-SET AND VOLUME-OF-FLUID METHOD FOR THREE-DIMENSIONAL INCOMPRESSIBLE TWO-PHASE FLOWS , 2003 .

[33]  Andrea Prosperetti,et al.  A second-order method for three-dimensional particle simulation , 2005 .

[34]  T. Kajishima,et al.  Interaction between particle clusters and particle-induced turbulence , 2002 .

[35]  J. Kuipers,et al.  Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres , 2007 .

[36]  Fahir Borak,et al.  Bubble column reactors , 2005 .

[37]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[38]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[39]  Ng Niels Deen,et al.  Direct Numerical Simulation (DNS) of mass, momentum and heat transfer in dense fluid-particle systems , 2014 .

[40]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[41]  J. Hua,et al.  Simulation of single bubble rising in liquid using front tracking method , 2006 .

[42]  S. Cummins,et al.  Estimating curvature from volume fractions , 2005 .

[43]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[44]  Y. Liao,et al.  A literature review of theoretical models for drop and bubble breakup in turbulent dispersions , 2009 .

[45]  J.A.M. Kuipers,et al.  Direct Numerical Simulation of Dense Gas-Solids Flows , 2006 .

[46]  J. F. Harper,et al.  Bubbles rising in line: why is the first approximation so bad? , 1997, Journal of Fluid Mechanics.

[47]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[48]  Gretar Tryggvason,et al.  Dynamics of homogeneous bubbly flows Part 1. Rise velocity and microstructure of the bubbles , 2002, Journal of Fluid Mechanics.

[49]  D. Lohse,et al.  Energy spectra and bubble velocity distributions in pseudo-turbulence: Numerical simulations vs. experiments , 2011 .

[50]  Jos Derksen,et al.  Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity , 2002 .

[51]  Deepak D Jain,et al.  Discrete bubble modeling for a micro-structured bubble column , 2013 .

[52]  Jam Hans Kuipers,et al.  A critical comparison of surface tension models for the volume of fluid method , 2014 .

[53]  Andrew P. Kuprat,et al.  Volume conserving smoothing for piecewise linear curves, surfaces, and triple lines , 2001 .

[54]  Mitutosi Kawaguti,et al.  Numerical Solution of the Navier-Stokes Equations for the Flow around a Circular Cylinder at Reynolds Number 40 , 1953 .

[55]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[56]  H. Prasser,et al.  Bubble size measurement using wire-mesh sensors , 2001 .

[57]  Ng Niels Deen,et al.  Multi-scale modeling of dispersed gas-liquid two-phase flow , 2004 .

[58]  Jam Hans Kuipers,et al.  Direct numerical simulation of the coalescence of bubbles , 2012 .

[59]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[60]  Jam Hans Kuipers,et al.  Review of direct numerical simulation of fluid–particle mass, momentum and heat transfer in dense gas–solid flows , 2014 .

[61]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[62]  J. Kuipers,et al.  A New Drag Correlation from Fully Resolved Simulations of Flow Past Monodisperse Static Arrays of Spheres , 2015 .

[63]  Liang-Shih Fan,et al.  3-D Direct Numerical Simulation of Gas–Liquid and Gas–Liquid–Solid Flow Systems Using the Level-Set and Immersed-Boundary Methods , 2006 .

[64]  S. I. Rubinow,et al.  The transverse force on a spinning sphere moving in a viscous fluid , 1961, Journal of Fluid Mechanics.

[65]  S. Zaleski,et al.  A geometrical area-preserving volume-of-fluid advection method , 2003 .

[66]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[67]  Ebrahim Shirani,et al.  An improved three-dimensional model for interface pressure calculations in free-surface flows , 2007 .

[68]  Ching-Long Lin,et al.  Lattice Boltzmann Study of Bubble Dynamics , 2006 .

[69]  Ng Niels Deen,et al.  Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method , 2005 .

[70]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[71]  Hiroshige Kikura,et al.  Uncertainty and intrusiveness of three-layer wire-mesh sensor , 2011 .

[72]  M. Ruzicka,et al.  On bubbles rising in line , 2000 .

[73]  Jorge Ramírez-Muñoz,et al.  Hydrodynamic interaction on large-Reynolds-number aligned bubbles: Drag effects , 2011 .

[74]  D. Tritton Experiments on the flow past a circular cylinder at low Reynolds numbers , 1959, Journal of Fluid Mechanics.

[75]  Jam Hans Kuipers,et al.  Direct numerical simulations of the drag force of bi-disperse bubble swarms , 2013 .

[76]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[77]  Liang-Shih Fan,et al.  Direct simulation of the buoyant rise of bubbles in infinite liquid using level set method , 2008 .

[78]  Sankaran Sundaresan,et al.  Dynamics of single rising bubbles in neutrally buoyant liquid-solid suspensions. , 2013, Physical review letters.

[79]  San-Yih Lin,et al.  A pressure correction‐volume of fluid method for simulation of two‐phase flows , 2012 .

[80]  Brian L. Smith,et al.  A novel technique for including surface tension in PLIC-VOF methods , 2002 .

[81]  Shl Sebastian Kriebitzsch,et al.  A methodology for highly accurate results of direct numerical simulations : drag force in dense gas–solid flows at intermediate Reynolds number , 2014 .

[82]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[83]  Jam Hans Kuipers,et al.  Immersed Boundary Method applied to single phase flow past crossing cylinders , 2013 .

[84]  Ng Niels Deen,et al.  Direct numerical simulation of flow and heat transfer in dense fluid-particle systems , 2012 .

[85]  J. Pinton,et al.  Velocity measurement of a settling sphere , 2000 .

[86]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[87]  W. Henshaw,et al.  An adaptive numerical scheme for high-speed reactive flow on overlapping grids , 2003 .

[88]  Liang-Shih Fan,et al.  Bubble formation and dynamics in gas–liquid–solid fluidization—A review , 2007 .

[89]  E. Puckett,et al.  Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .

[90]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[91]  George M. Homsy,et al.  Stokes flow through periodic arrays of spheres , 1982, Journal of Fluid Mechanics.

[92]  Howard H. Hu,et al.  Direct simulation of fluid particle motions , 1992 .

[93]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[94]  Andrea Prosperetti,et al.  On the in-line motion of two spherical bubbles in a viscous fluid , 1994, Journal of Fluid Mechanics.

[95]  Yong Jin,et al.  Slurry Reactors for Gas-to-Liquid Processes: A Review , 2007 .

[96]  Damien Tromeur-Dervout,et al.  Parallel solution methods for Poisson-like equations in two-phase flows , 2013 .

[97]  Jam Hans Kuipers,et al.  DNS of gas bubbles behaviour using an improved 3D front tracking model—Model development , 2010 .

[98]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[99]  Seungwon Shin,et al.  Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity , 2002 .

[100]  I Ivo Roghair,et al.  Direct numerical simulations of hydrodynamics and mass transfer in dense bubbly flows , 2007 .