Modelling a PEM fuel cell stack with a nonlinear equivalent circuit

A nonlinear circuit model of a polymer electrolyte membrane (PEM) fuel cell stack is presented. The model allows the simulation of both steady-state and dynamic behaviour of the stack on condition that the values of some of its parameters are changed in the two operating conditions. The circuit parameters can be obtained by means of simple experimental tests and calculations. A commercial PEM fuel cell stack is modelled as seen from the power conditioning system side, without requiring parameters necessary for complex mathematical models and not easily obtainable by the majority of users. A procedure of parameter determination is developed and a comparison between the simulated and experimental results for both steady-state and dynamic behaviour of the PEM stack is shown.

[1]  Ali Feliachi,et al.  Modeling and simulation of the dynamic behavior of a polymer electrolyte membrane fuel cell , 2003 .

[2]  Jean St-Pierre,et al.  Low Cost Electrodes for Proton Exchange Membrane Fuel Cells Performance in Single Cells and Ballard Stacks , 1997 .

[3]  J. Stumper,et al.  In Situ Determination of MEA Resistance and Electrode Diffusivity of a Fuel Cell , 2005 .

[4]  森 啓之 2003 IEEE Bologna Power Tech , 2004 .

[5]  F. Büchi,et al.  Investigation of the Transversal Water Profile in Nafion Membranes in Polymer Electrolyte Fuel Cells , 2001 .

[6]  Alexandros Katsaounis,et al.  The effect of membrane thickness on the conductivity of Nafion , 2006 .

[7]  G. Maggio,et al.  Modeling polymer electrolyte fuel cells: an innovative approach , 2001 .

[8]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[9]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[10]  S. Rael,et al.  Mathematical model and characterization of the transient behavior of a PEM fuel cell , 2004, IEEE Transactions on Power Electronics.

[11]  Yoon-Ho Kim,et al.  An electrical modeling and fuzzy logic control of a fuel cell generation system , 1999 .

[12]  A. Pozio,et al.  Tangential and normal conductivities of Nafion® membranes used in polymer electrolyte fuel cells , 2004 .

[13]  M. Valentini,et al.  A new semi-empirical approach to performance curves of polymer electrolyte fuel cells , 2002 .

[14]  P. Lund,et al.  Measurement of ohmic voltage losses in individual cells of a PEMFC stack , 2002 .

[15]  Sukhvinder P.S. Badwal,et al.  Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity , 2004 .

[16]  Günther G. Scherer,et al.  In Situ Membrane Resistance Measurements in Polymer Electrolyte Fuel Cells by Fast Auxiliary Current Pulses , 1995 .

[17]  A. Balkin,et al.  MODELLING A 500W POLYMER ELECTROLYTE MEMBRANE FUEL CELL , 2002 .

[18]  H. R. Kunz,et al.  High-Performance PEMFCs at Elevated Temperatures Using Nafion 112 Membranes , 2005 .

[19]  Xianguo Li,et al.  Mathematical modeling of proton exchange membrane fuel cells , 2001 .

[20]  T. Abe,et al.  Study of PEFCs by AC Impedance, Current Interrupt, and Dew Point Measurements I. Effect of Humidity in Oxygen Gas , 2004 .

[21]  D. Chu,et al.  Comparative studies of polymer electrolyte membrane fuel cell stack and single cell , 1999 .

[22]  Tatsuo Nishina,et al.  Characterization of a 100 cm2 Class Molten Carbonate Fuel Cell with Current Interruption , 1998 .

[23]  M. Valentini,et al.  A Working Model of Polymer Electrolyte Fuel Cells Comparisons Between Theory and Experiments , 2002 .

[24]  Massimo Ceraolo,et al.  Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description , 2003 .

[25]  P. Fedkiw,et al.  Nafion®-based composite polymer electrolyte membranes , 1998 .

[26]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.