Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)
暂无分享,去创建一个
By exploiting the extremely large effective cross sections ( ${10}^{\ensuremath{-}17}--{10}^{\ensuremath{-}16}{\mathrm{cm}}^{2}/\mathrm{molecule}$) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2\ifmmode\times\else\texttimes\fi{}{10}^{5}\mathrm{W}/{\mathrm{cm}}^{2}$ nonresonant near-infrared excitation show a clear ``fingerprint'' of its Raman features between 700 and $1700{\mathrm{cm}}^{\ensuremath{-}1}$. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.
[1] A. Laubereau,et al. Ultrafast vibrational relaxation and energy transfer in liquids , 1975 .