Mathematical Modeling of Electrostatic MEMS with Tailored Dielectric Properties

The "pull-in" or "snap-down" instability in electrostatically actuated microelec- tromechanical systems (MEMS) presents a ubiquitous challenge in MEMS technology of great im- portance. In this instability, when applied voltages are increased beyond a critical value, there is no longer a steady-state configuration of the device where mechanical members remain separate. This severely restricts the range of stable operation of many devices. In an attempt to reduce the effects of this instability, researchers have suggested spatially tailoring the dielectric properties of MEMS devices. Here, a mathematical model of an idealized electrostatically actuated MEMS device is constructed and analyzed for the purpose of investigating this possibility. The pull-in instability is characterized in terms of the bifurcation diagram for the mathematical model. Variations in this bifurcation diagram for various dielectric profiles are studied, yielding insight into how this technique may be used to increase the stable range of operation of electrostatically actuated MEMS devices.

[1]  H. Blasius Grenzschichten in Flüssigkeiten mit kleiner Reibung , 1907 .

[2]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[3]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[4]  S. B. Crary,et al.  Analysis And Simulation Of MOS CapacitorFeedback For Stabilizing Electrostatically ActuatedMechanical Devices , 1970 .

[5]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[6]  D. Sattinger Topics in stability and bifurcation theory , 1973 .

[7]  I. Stakgold Green's Functions and Boundary Value Problems , 1979 .

[8]  T. Y. Na,et al.  Computational methods in engineering boundary value problems , 1979 .

[9]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[10]  J. White,et al.  MEMCAD capacitance calculations for mechanically deformed square diaphragm and beam microstructures , 1991, TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers.

[11]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[12]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[13]  C. Hsu,et al.  Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory , 1993 .

[14]  Kristofer S. J. Pister,et al.  Analysis of closed-loop control of parallel-plate electrostatic microgrippers , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  H. Tilmans,et al.  Electrostatically driven vacuum-encapsulated polysilicon resonators part II. theory and performance , 1994 .

[16]  D. Bloom Grating light valves for high resolution displays , 1994, Proceedings of 1994 IEEE International Electron Devices Meeting.

[17]  J. Bryzek,et al.  Micromachines on the march , 1994, IEEE Spectrum.

[18]  C. Goldsmith,et al.  Micromechanical membrane switches for microwave applications , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[19]  Michael J. Anderson,et al.  BROADBAND ELECTROSTATIC TRANSDUCERS : MODELING AND EXPERIMENTS , 1995 .

[20]  G. K. Ananthasuresh,et al.  3D modeling of contact problems and hysteresis in coupled electro-mechanics , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[21]  Weiyuan Wang,et al.  Future of microelectromechanical systems (MEMS) , 1996 .

[22]  A. Dec,et al.  Micromachined varactor with wide tuning range , 1997 .

[23]  P. Pinsky,et al.  Nonlinear dynamic modeling of micromachined microwave switches , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[24]  I. Kuzin,et al.  Entire Solutions of Semilinear Elliptic Equations , 1997 .

[25]  J. Seeger,et al.  Stabilization of electrostatically actuated mechanical devices , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[26]  Olivier Français,et al.  Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena , 1998 .

[27]  Miko Elwenspoek,et al.  Modeling, design and testing of the electrostatic shuffle motor , 1998 .

[28]  Gabriel M. Rebeiz,et al.  30 GHz tuned MEMS switches , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[29]  B. E. Alaca,et al.  Analytical modeling of electrostatic membrane actuator for micro pumps , 1999 .

[30]  Robert W. Dutton,et al.  Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[31]  Wensyang Hsu,et al.  A two-way membrane-type micro-actuator with continuous deflections , 2000 .

[32]  Olivier Français,et al.  Enhancement of elementary displaced volume with electrostatically actuated diaphragms: application to electrostatic micropumps , 2000 .

[33]  P. Dario,et al.  Micro-systems in biomedical applications , 2000 .

[34]  J. Pelesko,et al.  Nonlocal problems in MEMS device control , 2001 .