The efficient computation of the cumulative distribution and probability density functions in the diffusion model

An algorithm is described to efficiently compute the cumulative distribution and probability density functions of the diffusion process (Ratcliff, 1978) with trial-to-trial variability in mean drift rate, starting point, and residual reaction time. Some, but not all, of the integrals appearing in the model’s equations have closed-form solutions, and thus we can avoid computationally expensive numerical approximations. Depending on the number of quadrature nodes used for the remaining numerical integrations, the final algorithm is at least 10 times faster than a classical algorithm using only numerical integration, and the accuracy is slightly higher. Next, we discuss some special cases with an alternative distribution for the residual reaction time or with fewer than three parameters exhibiting trialto-trial variability.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  J. Miller Numerical Analysis , 1966, Nature.

[3]  文魚 長谷川 D.R. Cox and H.D. Miller: The Theory of Stochastic Processes, Methuen. London, 1965, 398頁, 24×16cm, 4,200円. , 1966 .

[4]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[5]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[6]  Forman S. Acton,et al.  Numerical methods that work , 1970 .

[7]  I. I. Gikhman Theory of stochastic processes , 1974 .

[8]  Stephen E. Derenzo,et al.  Approximations for Hand Calculators Using Small Integer Coefficients , 1977 .

[9]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[10]  I. S. Gradshteyn,et al.  1 – ELEMENTARY FUNCTIONS , 1980 .

[11]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[12]  A. P. Prudnikov,et al.  Integrals and series of elementary functions , 1981 .

[13]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[14]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[15]  R. Duncan Luce,et al.  Response Times: Their Role in Inferring Elementary Mental Organization , 1986 .

[16]  John W. Oller,et al.  Methods That Work , 1986 .

[17]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[18]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[19]  Jeffrey N. Rouder,et al.  Modeling Response Times for Two-Choice Decisions , 1998 .

[20]  R. Ratcliff,et al.  Connectionist and diffusion models of reaction time. , 1999, Psychological review.

[21]  T. Zandt,et al.  How to fit a response time distribution , 2000, Psychonomic bulletin & review.

[22]  W. Schwarz The ex-Wald distribution as a descriptive model of response times , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[23]  R. Ratcliff,et al.  Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability , 2002, Psychonomic bulletin & review.

[24]  I. J. Myung,et al.  Tutorial on maximum likelihood estimation , 2003 .

[25]  Peter C. M. Molenaar,et al.  On the relation between the mean and the variance of a diffusion model response time distribution , 2005 .