Atomic Layer Deposition of Wet-Etch Resistant Silicon Nitride Using Di(sec-butylamino)silane and N2 Plasma on Planar and 3D Substrate Topographies.

The advent of three-dimensional (3D) finFET transistors and emergence of novel memory technologies place stringent requirements on the processing of silicon nitride (SiNx) films used for a variety of applications in device manufacturing. In many cases, a low temperature (<400 °C) deposition process is desired that yields high quality SiNx films that are etch resistant and also conformal when grown on 3D substrate topographies. In this work, we developed a novel plasma-enhanced atomic layer deposition (PEALD) process for SiNx using a mono-aminosilane precursor, di(sec-butylamino)silane (DSBAS, SiH3N(sBu)2), and N2 plasma. Material properties have been analyzed over a wide stage temperature range (100-500 °C) and compared with those obtained in our previous work for SiNx deposited using a bis-aminosilane precursor, bis(tert-butylamino)silane (BTBAS, SiH2(NHtBu)2), and N2 plasma. Dense films (∼3.1 g/cm3) with low C, O, and H contents at low substrate temperatures (<400 °C) were obtained on planar substrates for this process when compared to other processes reported in the literature. The developed process was also used for depositing SiNx films on high aspect ratio (4.5:1) 3D trench nanostructures to investigate film conformality and wet-etch resistance (in dilute hydrofluoric acid, HF/H2O = 1:100) relevant for state-of-the-art device architectures. Film conformality was below the desired levels of >95% and attributed to the combined role played by nitrogen plasma soft saturation, radical species recombination, and ion directionality during SiNx deposition on 3D substrates. Yet, very low wet-etch rates (WER ≤ 2 nm/min) were observed at the top, sidewall, and bottom trench regions of the most conformal film deposited at low substrate temperature (<400 °C), which confirmed that the process is applicable for depositing high quality SiNx films on both planar and 3D substrate topographies.

[1]  W. Kessels,et al.  Atomic Layer Deposition of Silicon Nitride from Bis(tertiary-butyl-amino)silane and N2 Plasma Studied by in Situ Gas Phase and Surface Infrared Spectroscopy , 2016 .

[2]  Jae-Min Park,et al.  Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor. , 2016, ACS applied materials & interfaces.

[3]  Z. Tao,et al.  Self-aligned quadruple patterning to meet requirements for fins with high density , 2016 .

[4]  W. Kessels,et al.  Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride. , 2015, The journal of physical chemistry letters.

[5]  Viljami Pore,et al.  Atomic Layer Deposition of Silicon Nitride from Bis(tert-butylamino)silane and N2 Plasma. , 2015, ACS applied materials & interfaces.

[6]  Weisheng Zhao,et al.  Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges , 2015, Micromachines.

[7]  Hcm Harm Knoops,et al.  Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time , 2015 .

[8]  S. Agarwal,et al.  Low-Temperature Conformal Atomic Layer Deposition of SiNx Films Using Si₂Cl₆ and NH₃ Plasma. , 2015, ACS applied materials & interfaces.

[9]  J. Sundqvist,et al.  Low temperature deposition of silicon nitride using Si3Cl8 , 2015 .

[10]  J. Robertson,et al.  High-K materials and metal gates for CMOS applications , 2015 .

[11]  Hansong Cheng,et al.  Density functional theory study on the full ALD process of silicon nitride thin film deposition via BDEAS or BTBAS and NH3. , 2014, Physical chemistry chemical physics : PCCP.

[12]  C. Murray,et al.  Effect of reaction mechanism on precursor exposure time in atomic layer deposition of silicon oxide and silicon nitride. , 2014, ACS applied materials & interfaces.

[13]  Hansong Cheng,et al.  First-Principles Study of a Full Cycle of Atomic Layer Deposition of SiO2 Thin Films with Di(sec-butylamino)silane and Ozone , 2013 .

[14]  Vasile Paraschiv,et al.  STT MRAM patterning challenges , 2013, Advanced Lithography.

[15]  F. Koehler,et al.  Atomic Layer Deposition of SiN for spacer applications in high-end logic devices , 2012 .

[16]  Nadine Collaert,et al.  CMOS Nanoelectronics : Innovative Devices, Architectures, and Applications , 2012 .

[17]  K. Hempel,et al.  Robust PEALD SiN spacer for gate first high-k metal gate integration , 2012, 2012 IEEE International Conference on IC Design & Technology.

[18]  Hansong Cheng,et al.  On the Mechanisms of SiO2 Thin-Film Growth by the Full Atomic Layer Deposition Process Using Bis(t-butylamino)silane on the Hydroxylated SiO2(001) Surface , 2012 .

[19]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[20]  I. Raaijmakers (Invited) Current and Future Applications of ALD in Micro-Electronics , 2011, ECS Transactions.

[21]  Se Stephen Potts,et al.  Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges , 2011 .

[22]  Sean W. King,et al.  Plasma enhanced atomic layer deposition of SiNx:H and SiO2 , 2011 .

[23]  Hcm Harm Knoops,et al.  Conformality of Plasma-Assisted ALD: Physical Processes and Modeling , 2010 .

[24]  C. Park,et al.  Growth studies and characterization of silicon nitride thin films deposited by alternating exposures to Si2Cl6 and NH3 , 2009 .

[25]  Sbs Stephan Heil,et al.  Deposition of TiN and HfO2 in a commercial 200mm remote plasma atomic layer deposition reactor , 2007 .

[26]  Rita Rooyackers,et al.  Spacer defined FinFET: Active area patterning of sub-20nm fins with high density , 2007 .

[27]  Gang Xiao,et al.  Thermal stability of magnetic tunneling junctions with MgO barriers for high temperature spintronics , 2006 .

[28]  F. Riley Silicon Nitride and Related Materials , 2004 .

[29]  W. Kessels,et al.  The growth kinetics of silicon nitride deposited from the SiH4-N2 reactant mixture in a remote plasma , 2004 .

[30]  Chenming Hu,et al.  Spacer FinFET: nanoscale double-gate CMOS technology for the terabit era , 2002 .

[31]  A. Dillon,et al.  Atomic layer controlled growth of Si3N4 films using sequential surface reactions , 1998 .

[32]  S. Yokoyama,et al.  Atomic-layer selective deposition of silicon nitride on hydrogen-terminated Si surfaces , 1998 .

[33]  Masakiyo Matsumura,et al.  Atomic-layer chemical-vapor-deposition of silicon-nitride , 1997 .

[34]  K. Shibahara,et al.  Atomic layer controlled deposition of silicon nitride with self‐limiting mechanism , 1996 .

[35]  Jagadeesh S. Moodera,et al.  Ferromagnetic-insulator-ferromagnetic tunneling: Spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited) , 1996 .

[36]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[37]  Stephen L Weeks,et al.  Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane , 2016 .

[38]  R. Pearlstein,et al.  Designing high performance precursors for atomic layer deposition of silicon oxide , 2015 .

[39]  S. King Dielectric Barrier, Etch Stop, and Metal Capping Materials for State of the Art and beyond Metal Interconnects , 2015 .

[40]  F. Koehler,et al.  Challenges in spacer process development for leading‐edge high‐k metal gate technology , 2014 .

[41]  J. Schaeffer,et al.  Evaluation of Low Temperature Silicon Nitride Spacer for High-k Metal Gate Integration , 2013 .

[42]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[43]  W. Kessels,et al.  Plasma diagnostic study of silicon nitride film growth in a remote Ar-H2-N2-SiH4 plasma: Role of N and SiHn radicals , 2004 .

[44]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[45]  J. Marks,et al.  Selective dry etching in a high density plasma for 0.5 μm complementary metal–oxide–semiconductor technology , 1994 .