MULTIPLE CLASSIFIER SYSTEMS: TOOLS AND METHODS

[1]  Ching Y. Suen,et al.  Computer recognition of unconstrained handwritten numerals , 1992, Proc. IEEE.

[2]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[3]  Fumitaka Kimura,et al.  Handwritten numerical recognition based on multiple algorithms , 1991, Pattern Recognit..

[4]  J. Franke,et al.  A comparison of two approaches for combining the votes of cooperating classifiers , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[5]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[6]  Fabio Roli,et al.  An approach to the automatic design of multiple classifier systems , 2001, Pattern Recognit. Lett..

[7]  T. Ho A theory of multiple classifier systems and its application to visual word recognition , 1992 .

[8]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[9]  Naonori Ueda,et al.  A Classifier Design Based on Combining Multiple Components by Maximum Entropy Principle , 2005, AIRS.

[10]  Ching Y. Suen,et al.  A theoretical analysis of the application of majority voting to pattern recognition , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[11]  Noel E. Sharkey,et al.  The "Test and Select" Approach to Ensemble Combination , 2000, Multiple Classifier Systems.

[12]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[13]  Arun Ross,et al.  Handbook of Multibiometrics , 2006, The Kluwer international series on biometrics.

[14]  Shigeo Abe,et al.  Fuzzy support vector machines for multiclass problems , 2002, ESANN.

[15]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[16]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[17]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[18]  Florin Cutzu,et al.  Polychotomous Classification with Pairwise Classifiers: A New Voting Principle , 2003, Multiple Classifier Systems.

[19]  Peter Bock,et al.  Overriding the Experts: A Stacking Method for Combining Marginal Classifiers , 2000, FLAIRS.

[20]  Thomas M. Strat,et al.  Decision analysis using belief functions , 1990, Int. J. Approx. Reason..

[21]  Kishan G. Mehrotra,et al.  Efficient classification for multiclass problems using modular neural networks , 1995, IEEE Trans. Neural Networks.

[22]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Pierre Loonis,et al.  A Fuzzy Petri Net for Pattern Recognition: Application to Dynamic Classes , 2002, Knowledge and Information Systems.

[24]  Vasile Palade,et al.  Multi-Classifier Systems: Review and a roadmap for developers , 2006, Int. J. Hybrid Intell. Syst..

[25]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[26]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[28]  Didier Dubois,et al.  On the unicity of dempster rule of combination , 1986, Int. J. Intell. Syst..

[29]  James Llinas,et al.  Handbook of Multisensor Data Fusion : Theory and Practice, Second Edition , 2008 .

[30]  Geok See Ng,et al.  Data equalisation with evidence combination for pattern recognition , 1998, Pattern Recognit. Lett..