Allylic Substitution with Dendritic Palladium Catalysts in a Continuously Operating Membrane Reactor
暂无分享,去创建一个
Manfred T. Reetz | Udo Kragl | U. Kragl | M. Reetz | N. Brinkmann | D. Giebel | G. Lohmer | G. Lohmer | N. Brinkmann | D. Giebel
[1] E. W. Meijer,et al. Poly(propylene imine) Dendrimers: Large‐Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations , 1993 .
[2] R. Barkley,et al. Electrochemical Reduction of CO2 Catalyzed by Small Organophosphine Dendrimers Containing Palladium , 1994 .
[3] D. Seebach,et al. Polymer‐ and Dendrimer‐Bound Ti‐TADDOLates in Catalytic (and Stoichiometric) Enantioselective Reactions: Are pentacoordinate cationic Ti complexes the catalytically active species? , 1996 .
[4] Wolfgang A. Herrmann,et al. Applied Homogeneous Catalysis with Organometallic Compounds , 1996 .
[5] D. M. Grove,et al. Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes , 1994, Nature.
[6] B. Pugin,et al. Dendrimers Containing Chiral Ferrocenyl Diphosphine Ligands for Asymmetric Catalysis , 1998 .
[7] M. Reetz,et al. Systhesis and Catalytic Activity of Dendritic Diphosphane Metal Complexes , 1997 .
[8] Udo Kragl,et al. Polymer enlarged oxazaborolidines in a membrane reactor: enhancing effectivity by retention of the homogeneous catalyst , 1998 .
[9] H. Brunner,et al. Enantioselektive Katalysen, 90[1]. Optisch aktive Stickstoffliganden mit Dendrimer-Struktur , 1994 .
[10] J. Fraser Stoddart,et al. Dendrimers—Branching out from curiosities into new technologies , 1998 .