Exploratory spatio-temporal data mining and visualization

Spatio-temporal data sets are often very large and difficult to analyze and display. Since they are fundamental for decision support in many application contexts, recently a lot of interest has arisen toward data-mining techniques to filter out relevant subsets of very large data repositories as well as visualization tools to effectively display the results. In this paper we propose a data-mining system to deal with very large spatio-temporal data sets. Within this system, new techniques have been developed to efficiently support the data-mining process, address the spatial and temporal dimensions of the data set, and visualize and interpret results. In particular, two complementary 3D visualization environments have been implemented. One exploits Google Earth to display the mining outcomes combined with a map and other geographical layers, while the other is a Java3D-based tool for providing advanced interactions with the data set in a non-geo-referenced space, such as displaying association rules and variable distributions.

[1]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[2]  Hannu Toivonen,et al.  Sampling Large Databases for Association Rules , 1996, VLDB.

[3]  Daniel A. Keim,et al.  Visual data mining in large geospatial point sets , 2004, IEEE Computer Graphics and Applications.

[4]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[5]  D. Peuquet It's About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems , 1994 .

[6]  Beng Chin Ooi,et al.  Discovery of General Knowledge in Large Spatial Databases , 1993 .

[7]  Ben Shneiderman,et al.  Inventing Discovery Tools: Combining Information Visualization with Data Mining1 , 2001, Inf. Vis..

[8]  J. Mennis,et al.  Mining Association Rules in Spatio-Temporal Data , 2003 .

[9]  Robert L. Grossman,et al.  Data Mining for Scientific and Engineering Applications , 2001, Massive Computing.

[10]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[11]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[12]  Jiawei Han,et al.  Fundamentals of spatial data warehousing for geographic knowledge discovery , 2001 .

[13]  Yvan Bédard,et al.  Toward better support for spatial decision making: Defining the characteristics of spatial on-line analytical processing (SOLAP) , 2001 .

[14]  Michael Spenke,et al.  Discovery Challenge: Visual, Interactive Data Mining with InfoZoom-the Financial Data Set , 1999 .

[15]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[16]  Ioannis Kopanakis,et al.  Visual data mining modeling techniques for the visualization of mining outcomes , 2003, J. Vis. Lang. Comput..

[17]  Andreas Wierse,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[18]  Shashi Shekhar,et al.  What’s Spatial About Spatial Data Mining: Three Case Studies , 2001 .

[19]  P. W. Huang,et al.  (Journal of Visual Languages and Computing,19:637-651)Spatial Inference and Similarity Retrieval of an Image Database System Based on Object's Spanning Representation , 2007 .

[20]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[21]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[22]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[23]  Ke Wang,et al.  Interestingness-Based Interval Merger for Numeric Association Rules , 1998, KDD.

[24]  Francesca A. Lisi,et al.  Supporting Data Analysis Through Visualizations , 2001 .

[25]  Ying Yang,et al.  A comparative study of discretization methods for naive-Bayes classifiers , 2002 .

[26]  Yoko NISHIMURA,et al.  Google Earth , 2008, Encyclopedia of GIS.

[27]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[28]  Wesley M. Johnston,et al.  Model visualization , 2001 .

[29]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[30]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[31]  Jiawei Han,et al.  Spatial Data Mining: Progress and Challenges , 1996, Workshop on Research Issues on Data Mining and Knowledge Discovery.

[32]  John F. Roddick,et al.  Paradigms for Spatial and Spatio-Temporal Data Mining , 2001 .

[33]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[34]  Gennady L. Andrienko,et al.  Exploratory spatio-temporal visualization: an analytical review , 2003, J. Vis. Lang. Comput..

[35]  Christopher A. Badurek,et al.  Review of Information visualization in data mining and knowledge discovery by Usama Fayyad, Georges G. Grinstein, and Andreas Wierse. Morgan Kaufmann 2002 , 2003 .

[36]  Salvatore Orlando,et al.  Enhancing the Apriori Algorithm for Frequent Set Counting , 2001, DaWaK.

[37]  Umeshwar Dayal,et al.  K-Harmonic Means - A Spatial Clustering Algorithm with Boosting , 2000, TSDM.

[38]  Christos Faloutsos,et al.  "GeoPlot": spatial data mining on video libraries , 2002, CIKM '02.