TWO HOT JUPITERS FROM K2 CAMPAIGN 4

We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecraft's K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coud\'e spectrograph on the McDonald Observatory 2.7 m telescope. K2-29 b (EPIC 211089792 b) transits a K1V star with a period of $3.2589263\pm0.0000015$ days; its orbit is slightly eccentric ($e=0.084_{-0.023}^{+0.032}$). It has a radius of $R_P=1.000_{-0.067}^{+0.071}$ $R_J$ and a mass of $M_P=0.613_{-0.026}^{+0.027}$ $M_J$. Its host star exhibits significant rotational variability, and we measure a rotation period of $P_{\mathrm{rot}}=10.777 \pm 0.031$ days. K2-30 b (EPIC 210957318 b) transits a G6V star with a period of $4.098503\pm0.000011$ days. It has a radius of $R_P=1.039_{-0.051}^{+0.050}$ $R_J$ and a mass of $M_P=0.579_{-0.027}^{+0.028}$ $M_J$. The star has a low metallicity for a hot Jupiter host, $[\mathrm{Fe}/\mathrm{H}]=-0.15 \pm 0.05$.

[1]  P. Gondoin,et al.  Planetary transit candidates in the CoRoT LRa01 field , 2009, 1110.2384.

[2]  L. Wallace,et al.  AN OPTICAL AND NEAR-INFRARED (2958–9250 Å) SOLAR FLUX ATLAS , 2011 .

[3]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[4]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[5]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[6]  P. Berlind,et al.  PLANETARY CANDIDATES FROM THE FIRST YEAR OF THE K2 MISSION , 2015, 1511.07820.

[7]  H. C. Stempels,et al.  FIES: The high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope , 2014 .

[8]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[9]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS , 2014, 1402.6534.

[10]  T. Guillot,et al.  SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period , 2015, 1511.00643.

[11]  D. Montes,et al.  Reliable probabilistic determination of membership in stellar kinematic groups in the young disk , 2014 .

[12]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[13]  F. Adams,et al.  WASP-47: A HOT JUPITER SYSTEM WITH TWO ADDITIONAL PLANETS DISCOVERED BY K2 , 2015, 1508.02411.

[14]  V. Straižys,et al.  Fundamental stellar parameters derived from the evolutionary tracks , 1981 .

[15]  Y. Katherina Feng,et al.  Exoplanet Orbit Database. II. Updates to Exoplanets.org , 2014, 1409.7709.

[16]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[17]  T. Mazeh,et al.  Measuring the rotation period distribution of field M dwarfs with Kepler , 2013, 1303.6787.

[18]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[19]  The mass of the Mars-sized exoplanet Kepler-138 b from transit timing , 2015, Nature.

[20]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[21]  C. Petrovich STEADY-STATE PLANET MIGRATION BY THE KOZAI–LIDOV MECHANISM IN STELLAR BINARIES , 2014, 1405.0280.

[22]  Nicolas Buchschacher,et al.  Harps-N: the new planet hunter at TNG , 2012, Other Conferences.

[23]  Martin Pätzold,et al.  The needle in the haystack: searching for transiting extrasolar planets in CoRoT stellar light curves , 2012 .

[24]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[25]  Antonino Francesco Lanza,et al.  Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star , 2014, 1409.8245.

[26]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[27]  H. C. Stempels,et al.  Detailed analysis of Balmer lines in cool dwarf stars , 2002, astro-ph/0201537.

[28]  A. F. Lanza,et al.  Hot Jupiters and the evolution of stellar angular momentum , 2009, Proceedings of the International Astronomical Union.

[29]  B. Smalley,et al.  Accurate fundamental parameters for 23 bright solar-type stars , 2010, 1002.4268.

[30]  T. Guillot,et al.  Transiting exoplanets from the CoRoT space mission Resolving the nature of transit candidates for the LRa03 and SRa03 fields , 2011, Astrophysics and Space Science.

[31]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[32]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[33]  C. Petrovich HOT JUPITERS FROM COPLANAR HIGH-ECCENTRICITY MIGRATION , 2014, 1409.8296.

[34]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[35]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[36]  W. Chaplin,et al.  Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler , 2014, 1408.3988.

[37]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[38]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[39]  Frederic Pont,et al.  Empirical evidence for tidal evolution in transiting planetary systems , 2008, 0812.1463.

[40]  W. Farr,et al.  ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES , 2012, 1206.3529.

[41]  Jinglin Zhao,et al.  THREE PLANETS ORBITING WOLF 1061 , 2015, 1512.05154.

[42]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[43]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[44]  S. Csizmadia,et al.  INTERPLAY OF TIDAL EVOLUTION AND STELLAR WIND BRAKING IN THE ROTATION OF STARS HOSTING MASSIVE CLOSE-IN PLANETS , 2015, 1503.04369.

[45]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[46]  Spain.,et al.  A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars , 2015, 1503.09111.

[47]  S. Csizmadia,et al.  THE PLANETARY SYSTEM TO KIC 11442793: A COMPACT ANALOGUE TO THE SOLAR SYSTEM , 2013, 1310.6248.

[48]  R. Dawson,et al.  GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET–PLANET INTERACTIONS , 2013, 1302.6244.

[49]  R. G. West,et al.  Transiting hot Jupiters from WASP-South, Euler and TRAPPIST : WASP-95b to WASP-101b , 2013, 1310.5630.

[50]  S. Csizmadia,et al.  A study of the performance of the transit detection tool DST in space-based surveys - Application of the CoRoT pipeline to Kepler data , 2012, 1211.6550.

[51]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .