A [2]catenane and a [2]rotaxane as prototypes of topological and Euclidean molecular "rubber gloves".

A [2]catenane and a [2]rotaxane have been prepared from a C2-symmetric, 2,9-diphenyl-1,10-phenanthroline-based (dpp-based) macrocycle incorporating a 1,5-dioxynaphthalene subunit by means of the transition metal templated technique. In the case of the catenane, this macrocycle is interlocked with a dpp-based macrocycle that is oriented through the location of a p-tolyl substituent in the 4-position of the phenanthroline subunit. In the case of the rotaxane, the C2-symmetric macrocycle is threaded onto an oriented, dumbbell-shaped molecule, based on the same 4-p-tolyl-1,10-phenanthroline subunit, which bears tetraarylmethane stoppers. Both species are chemically achiral molecules, yet they are composed entirely of asymmetric, mirror-image conformations. Conformational enantiomerization processes therefore take place exclusively by chiral pathways, conferring on these molecules the "rubber glove" property. However, while the molecular graph (constitutional formula) of the [2]rotaxane can be deformed into a planar and, hence, rigidly achiral representation, a feature shared by a few other compounds in the literature that have been characterized as "Euclidean rubber gloves", the molecular graph of the [2]catenane cannot be deformed in this way. It therefore has the unique property of being a chemically achiral "topological rubber glove".

[1]  Laurence Raehm,et al.  A Transition Metal Containing Rotaxane in Motion: Electrochemically Induced Pirouetting of the Ring on the Threaded Dumbbell , 1999 .

[2]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[3]  G. Rapenne,et al.  Copper(I)- or Iron(II)-Templated Synthesis of Molecular Knots Containing Two Tetrahedral or Octahedral Coordination Sites , 1999 .

[4]  E. Flapan Topological rubber gloves , 1998 .

[5]  D. Amabilino,et al.  Copper(I)-templated synthesis of [2]catenates bearing pendant porphyrins , 1998 .

[6]  K. Mislow,et al.  A CHEMICALLY ACHIRAL MOLECULE WITH NO RIGIDLY ACHIRAL PRESENTATIONS , 1997 .

[7]  J. Sauvage,et al.  Transition-metal template synthesis of a rotaxane incorporating two different coordinating units in its thread , 1997 .

[8]  G. Rapenne,et al.  Resolution of a Molecular Trefoil Knot , 1996 .

[9]  Jean-Pierre Sauvage,et al.  Molecular Composite Knots , 1996 .

[10]  J. F. Stoddart,et al.  Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .

[11]  J Fraser Stoddart,et al.  A Switchable Hybrid [2]-Catenane Based on Transition Metal Complexation and π-Electron Donor-Acceptor Interactions. , 1996, Journal of the American Chemical Society.

[12]  F. Vögtle,et al.  TEMPLATE SYNTHESIS OF THE FIRST AMIDE-BASED ROTAXANES , 1995 .

[13]  Heinrich Becker,et al.  Selective asymmetric dihydroxylation of polyenes , 1995 .

[14]  H. Gibson,et al.  Synthesis and Preliminary Characterization of Some Polyester Rotaxanes , 1995 .

[15]  J. Becher,et al.  A copper(I) [2]-catenate incorporating a tetrathiafulvalene unit , 1994 .

[16]  C. Dietrich-Buchecker,et al.  High-yield synthesis of a dicopper(I) trefoil knot containing 1,3-phenylene groups as bridges between the chelate units , 1994 .

[17]  V. Balzani,et al.  Dicopper(I) trefoil knots and related unknotted molecular systems: influence of ring size and structural factors on their synthesis and electrochemical and excited-state properties , 1993 .

[18]  H. Gibson,et al.  New triarylmethyl derivatives: "blocking groups" for rotaxanes and polyrotaxanes , 1993 .

[19]  G. Wenz,et al.  Synthesis of a Lipophilic Cyclodextrin–[2]-Rotaxane† , 1992 .

[20]  J. Sauvage,et al.  Synthesis, characterization, and a proton NMR study of topologically chiral copper(I) [2]-catenates and achiral analogs , 1992 .

[21]  Gerhard Wenz,et al.  Über das Auffädeln von Cyclodextrin-Ringen auf Polymerketten† , 1992 .

[22]  Douglas Philp,et al.  A new design strategy for the self-assembly of molecular shuttles , 1992 .

[23]  H. Gibson,et al.  Synthesis of a rotaxane via the template method , 1991 .

[24]  Jean-Pierre Sauvage,et al.  Interlacing molecular threads on transition metals: catenands, catenates, and knots , 1990 .

[25]  Hiizu Iwamura,et al.  Stereochemical consequences of dynamic gearing , 1988 .

[26]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[27]  C. Dietrich,et al.  Topological enhancement of basicity: molecular structure and solution study of a monoprotonated catenand , 1986 .

[28]  Jean-Pierre Sauvage,et al.  Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .

[29]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[30]  K. Mislow,et al.  Dynamic gearing and residual stereoisomerism in labeled bis(9-triptycyl)methane and related molecules. Synthesis and stereochemistry of bis(2,3-dimethyl-9-triptycyl)methane, bis(2,3-dimethyl-9-triptycyl)carbinol, and bis(1,4-dimethyl-9-triptycyl)methane , 1983 .

[31]  K. Mislow,et al.  Stereochemical consequences of dynamic gearing in substituted bis(9-triptycyl) methanes and related molecules. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Mislow,et al.  SEPARATION AND IDENTIFICATION OF RESIDUAL DIASTEREOMERS IN A MAXIMALLY LABELED TRIARYLAMINE , 1980 .

[33]  G. Schill,et al.  Massenspektrometrische Untersuchungen einiger Catenane und Makrocyclen , 1977 .

[34]  M. Pavlin,et al.  Nuclear magnetic resonance determination of enantiomeric composition and absolute configuration of .gamma.-lactones using chiral 2,2,2-trifluoro-1-(9-anthryl)ethanol , 1977 .

[35]  K. Mislow,et al.  Stereochemical consequences of correlated rotation in molecular propellers , 1976 .

[36]  D. Gust,et al.  Analysis of isomerization in compounds displaying restricted rotation of aryl groups , 1973 .

[37]  G. Schill,et al.  Rotaxan‐Verbindungen, III. Synthese eines Rotaxans mit Triphenylmethyl‐Sperrgruppen und massenspektrometrische Untersuchungen , 1973 .

[38]  Ian Thomas. Harrison,et al.  Synthesis of a stable complex of a macrocycle and a threaded chain , 1967 .

[39]  K. Mislow SECTION OF GEOLOGY AND MINERALOGY: OPTICAL ACTIVITY, MOLECULAR SYMMETRY ELEMENTS, AND CONFIGURATION IN THE BIPHENYL SERIES* , 1957 .

[40]  K. Mislow,et al.  MOLECULAR DISSYMMETRY AND OPTICAL INACTIVITY , 1955 .

[41]  K Mislow,et al.  Limitations of the Symmetry Criteria for Optical Inactivity and Resolvability. , 1954, Science.

[42]  W. Parham,et al.  The protection of hydroxyl groups. , 1948, Journal of the American Chemical Society.