Riesz transform on manifolds and Poincaré inequalitie

We study the validity of the Lp inequality for the Riesz transform when p > 2 and of its reverse inequality when 1 < p < 2 on complete Riemannian manifolds under the doubling property and some Poincare inequalities. MSC numbers 2000: 58J35, 42B20

[1]  L. Saloff-Coste,et al.  Stability results for Harnack inequalities , 2005 .

[2]  G. Carron,et al.  Riesz transform and $L^p$ cohomology for manifolds with Euclidean ends , 2004, math/0411648.

[3]  P. Auscher,et al.  Riesz transform on manifolds and heat kernel regularity , 2004, math/0411374.

[4]  Zhongwei Shen Bounds of Riesz Transforms on $L^p$ Spaces for Second Order Elliptic Operators , 2004, math/0410475.

[5]  Thierry Coulhon,et al.  Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz , 2004 .

[6]  P. Auscher ON L ESTIMATES FOR SQUARE ROOTS OF SECOND ORDER ELLIPTIC OPERATORS ON R , 2004 .

[7]  P. Auscher On Lp estimates for square roots of second order elliptic operators on Rn. , 2004 .

[8]  P. Kunstmann,et al.  Calderón-Zygmund theory for non-integral operators and the H∞ functional calculus , 2004 .

[9]  P. Kunstmann,et al.  Calderón-Zygmund theory for non-integral operators and the $H^{\infty}$ functional calculus , 2003 .

[10]  X. Duong,et al.  Riesz transform and related inequalities on non‐compact Riemannian manifolds , 2003 .

[11]  S. Hofmann,et al.  Lp bounds for Riesz transforms and square roots associated to second order elliptic operators , 2003 .

[12]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[13]  X. Duong,et al.  Riesz transforms for 1 ≤ p ≤ 2 , 1999 .

[14]  Estimations L [exposant] p des opérateurs de Schrödinger sur les groupes nilpotents. La transformation de Riesz sur les variétés coniques , 1999 .

[15]  La transformation de Riesz sur les variétés coniques , 1998 .

[16]  R. Wheeden,et al.  Self-Improving Properties of John-Nirenberg and Poincare Inequalities on Spaces of Homogeneous Type , 1998 .

[17]  P. Tchamitchian,et al.  Square root problem for divergence operators and related topics , 2018, Astérisque.

[18]  T. Iwaniec The Gehring Lemma , 1998 .

[19]  L. Saloff-Coste,et al.  Parabolic Harnack inequality for divergence form second order differential operators , 1995 .

[20]  Alexander Grigor'yan,et al.  Upper Bounds of Derivatives of the Heat Kernel on an Arbitrary Complete Manifold , 1995 .

[21]  L. Saloff-Coste,et al.  A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .

[22]  D. Bakry Transformations de Riesz pour les semi-groupes symetriques Seconde patrie: Etude sous la condition Γ2≧0 , 1985 .

[23]  M. Giaquinta Multiple integrals in the calculus of variations and non linear elliptic systems , 1981 .

[24]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[25]  F. Gehring TheLp-integrability of the partial derivatives of A quasiconformal mapping , 1973 .

[26]  F. Gehring,et al.  The $L^p$-integrability of the partial derivatives of a quasiconformal mapping , 1973 .

[27]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[28]  E. Stein Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .

[29]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .