Singular perturbation for the Dirichlet boundary control of elliptic problems

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small penalization parameter. Some numerical results are reported on to highlight the reliability of such an approach.

[1]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[2]  S. Ravindran,et al.  A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier--Stokes Equations , 1998 .

[3]  P. Colli Franzone Approximation of Optimal Control Problems of Systems Described by Boundary-value Mixed Problems of Dirichlet-Neumann Type , 1973, Optimization Techniques.

[4]  K. Kunisch,et al.  Augmented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[5]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[6]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[7]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[8]  Nadir Arada,et al.  Asymptotic analysis of some control problems , 2000 .

[9]  L. S. Hou,et al.  Numerical Approximation of Optimal Flow Control Problems by a Penalty Method: Error Estimates and Numerical Results , 1999, SIAM J. Sci. Comput..

[10]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[11]  Jean-Pierre Raymond,et al.  A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions , 2003 .

[12]  Karl Kunisch,et al.  Augemented Lagrangian Techniques for Elliptic State Constrained Optimal Control Problems , 1997 .

[13]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[14]  A. Kirsch The Robin problem for the Helmholtz equation as a singular perturbation problem , 1985 .

[15]  Martin Costabel,et al.  A singularly perturbed mixed boundary value problem , 1996 .

[16]  I. Babuska The Finite Element Method with Penalty , 1973 .