Role of the scavenger receptor in the uptake of methylamine-activated alpha 2-macroglobulin by rat liver.

Alpha 2-Macroglobulin (alpha 2M) requires activation by small nucleophiles (e.g. methylamine; giving alpha 2M-Me) or proteolytic enzymes (e.g. trypsin; giving alpha 2M-Tr) in order to be rapidly removed from the circulation by the liver. Separation of rat liver cells into parenchymal, endothelial and Kupffer cells at 10 min after injection indicates that liver uptake of alpha 2M-Me is shared between parenchymal and endothelial cells, with relative contributions of 51.3% and 48.3% respectively of total liver-associated radioactivity. In contrast, alpha 2M-Tr is almost exclusively taken up by the parenchymal cells (90.1% of liver-associated radioactivity). A preinjection of 5 mg of poly(inosinic acid) decreased liver uptake of alpha 2M-Me to 39.9% of the control value, while it had no effect on liver uptake of alpha 2M-Tr. It appears that poly(inosinic acid) specifically reduces the uptake of alpha 2M-Me in vivo by endothelial cells, leaving uptake by parenchymal cells unaffected. In vitro studies with isolated liver cells indicate that the association of alpha 2M-Me with endothelial cells is 21-fold higher per mg of cell protein than with parenchymal cells. The capacity of endothelial cells to degrade alpha 2M-Me appears to be 46 times higher than that of parenchymal cells. Competition studies show that poly(inosinic acid) or acetylated low-density lipoprotein effectively competes with the association of alpha 2M-Me with endothelial and Kupffer cells, but association with parenchymal cells is unaffected. It is suggested that activation of alpha 2M by methylamine induces a charge distribution on the protein which triggers specific uptake by the scavenger receptor on endothelial cells. It is concluded that the uptake of alpha 2M-Me by the scavenger receptor might function as an additional system for the uptake of activated alpha 2M.