Rich dynamics of pulse-coupled spiking neurons with a triangular base signal

This paper presents a spiking neuron circuit with a triangular base signal. The circuit can output rich pulse-trains and the dynamics can be analyzed using a piecewise linear one-dimensional pulse-position map. Applying cross-switching to two neurons we construct a pulse-coupled system whose dynamics can be integrated into a composite map of the pulse position maps of two neurons. The composite map is piecewise linear and precise analysis is possible. We can clarify various interesting phenomena caused by the pulse-coupling. For example, periodic behavior of each neuron is changed into chaotic behavior and chaotic behavior of each neuron is changed into periodic behavior. These results provide basic information to construct flexible pulse-coupled neural networks.

[1]  T. Allen,et al.  Complicated, but rational, phase-locking responses of an ideal time-base oscillator , 1983 .

[2]  Toshimichi Saito,et al.  Grouping synchronization in a pulse-coupled network of chaotic spiking oscillators , 2004, IEEE Transactions on Neural Networks.

[3]  Nabil H. Farhat,et al.  The Bifurcating Neuron Network 2: an analog associative memory , 2002, Neural Networks.

[4]  Hiroyuki Torikai,et al.  Resonance phenomenon of interspike intervals from a spiking oscillator with two periodic inputs , 2001 .

[5]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[6]  Leon Glass,et al.  Bistability, period doubling bifurcations and chaos in a periodically forced oscillator , 1982 .

[7]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[8]  H. Torikai,et al.  A multiplex communication system using chaotic pulse-trains with sawtooth control , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[9]  Nikolai F. Rulkov,et al.  Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.

[10]  J. Rinzel,et al.  INTEGRATE-AND-FIRE MODELS OF NERVE MEMBRANE RESPONSE TO OSCILLATORY INPUT. , 1981 .

[11]  Nikolai F. Rulkov,et al.  Pseudo-chaotic time hopping for UWB impulse radio , 2001 .

[12]  H. Torikai,et al.  Rich phenomena of pulse-coupled spiking neurons with triangular waveform input , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[13]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[14]  Toshimichi Saito,et al.  Analysis of Composite Dynamics of Two Bifurcating Neurons , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[15]  LeeGeehyuk,et al.  The bifurcating neuron network 2 , 2002 .

[16]  Hiroyuki Torikai,et al.  Master-Slave Synchronization of Pulse-Coupled Bifurcating Neurons(Neural Networks and Bioengineering) , 2004 .

[17]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[18]  DeLiang Wang,et al.  A dynamically coupled neural oscillator network for image segmentation , 2002, Neural Networks.

[19]  DeLiang Wang,et al.  Synchronization rates in classes of relaxation oscillators , 2004, IEEE Transactions on Neural Networks.

[20]  Toshimichi Saito,et al.  A piecewise constant switched chaotic circuit with rect-rippling return maps , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[21]  Eugene M. Izhikevich,et al.  Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory , 1999, IEEE Trans. Neural Networks.

[22]  Tracy Allen,et al.  On the arithmetic of phase locking: Coupled neurons as a lattice on R2 , 1983 .

[23]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[24]  Toshimichi Saito,et al.  Synchronization phenomena in pulse-coupled networks driven by spike-train inputs , 2004, IEEE Transactions on Neural Networks.

[25]  J J Hopfield,et al.  Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[27]  DeLiang Wang,et al.  Synchrony and Desynchrony in Integrate-and-Fire Oscillators , 1999, Neural Computation.