An optically efficient full-color reflective display with an electrochromic device and color production units

ABSTRACT In this paper, we report a full-color reflective display device by combining reflective electrochromic device (ECD) and different color production units (conventional color filter (CF) and transmittance controllable electrochromic color filter (TCECF)). A full-color reflective device with TCECF showed an excellent diffuse reflectance of 47.2% in the white state owing to the high transmittance of TCECF in the bleached state than that of CF (19.5%). This device structure can easily provide various colors with high brightness and saturation with a broad grayscale. Particularly, in the colored state, TCECF and CF-based full-color reflective device displayed color coordinates of (0.59, 0.34), (0.31, 0.66), (0.24, 0.30) and (0.65, 0.33), (0.27, 0.61), (0.15, 0.06), for red, green and blue, respectively, and alongside also exhibited color gamut of 36.8% (for TCECF) and 73.1% (for CF) for full color reflective devices.

[1]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[2]  P. Parseval,et al.  Structure of the { 001 } talc surface as seen by atomic force 1 microscopy : Comparison with X-ray and electron diffraction 2 results 3 4 , 2006 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  J. Reynolds,et al.  The First Truly All‐Polymer Electrochromic Devices , 2003 .

[5]  Norihisa Kobayashi,et al.  Electrochemical and spectroscopic characteristics of dimethyl terephthalate , 2004 .

[6]  Asad A. Khan,et al.  Low-power cholesteric LCDs and electronic books , 2004, SPIE Defense + Commercial Sensing.

[7]  Ranjit De,et al.  Ion Association and Solvation Behavior of Some 1-1 Electrolytes in 2-Ethoxyethanol Probed by a Conductometric Study , 2006 .

[8]  Hitoshi Kuma,et al.  47.5L: Late-News Paper: Highly Efficient White OLEDs Using RGB Fluorescent Materials , 2007 .

[9]  Satyen K. Deb,et al.  Opportunities and challenges in science and technology of WO3 for electrochromic and related applications , 2008 .

[10]  An-Hsiang Wang,et al.  Effects of electronic‐book display and inclination on users' comprehension under various ambient illuminance conditions , 2008 .

[11]  Norihisa Kobayashi,et al.  Organic electrochromism for a new color electronic paper , 2008 .

[12]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[13]  David Coates,et al.  Low‐Power Large‐Area Cholesteric Displays , 2009 .

[14]  Anne C. Dillon,et al.  Metal-oxide films for electrochromic applications: present technology and future directions , 2010 .

[15]  Pierre M Beaujuge,et al.  Material strategies for black-to-transmissive window-type polymer electrochromic devices. , 2011, ACS applied materials & interfaces.

[16]  J. Yi,et al.  Reflective Thermochromic Display on Polyethylene Naphthalate Film , 2013 .

[17]  Shin-Tson Wu,et al.  A full-color reflective display using polymer-stabilized blue phase liquid crystal , 2013 .

[18]  M. Deepa,et al.  A novel 1,1′-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl)butyl]-4,4′-bipyridinium dibromide (viologen) for a high contrast electrochromic device , 2013 .

[19]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[20]  Guofu Zhou,et al.  Microfluidics for electronic paper-like displays. , 2014, Lab on a chip.

[21]  Justin A. Kerszulis,et al.  Follow the Yellow Brick Road: Structural Optimization of Vibrant Yellow-to-Transmissive Electrochromic Conjugated Polymers , 2014 .

[22]  Ignacio González Alonso,et al.  Review of Display Technologies Focusing on Power Consumption , 2015 .

[23]  B. Swain,et al.  Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation. , 2015, Environmental research.

[24]  D. Hashizume,et al.  Fused-Fluoran Leuco Dyes with Large Color-Change Derived from Two-Step Equilibrium: iso-Aminobenzopyranoxanthenes. , 2016, The Journal of organic chemistry.

[25]  Zach DeVito,et al.  Opt , 2017 .

[26]  Huan-Shen Liu,et al.  Highly transparent to truly black electrochromic devices based on an ambipolar system of polyamides and viologen , 2017 .

[27]  Li Wang,et al.  The design considerations for full-color e-paper , 2017, OPTO.

[28]  Guofu Zhou,et al.  Optofluid-Based Reflective Displays , 2018, Micromachines.

[29]  Sol , 2018, Z : Revue itinérante d’enquête et de critique sociale.

[30]  G. Kim,et al.  High‐Performance Electrochromic Optical Shutter Based on Fluoran Dye for Visibility Enhancement of Augmented Reality Display , 2018 .

[31]  G. Kim,et al.  Next generation smart window display using transparent organic display and light blocking screen. , 2018, Optics express.

[32]  G. Kim,et al.  High‐Performance Reflective Electrochromic Device by Integrating White Reflector and High Optical Density Electrochromic System , 2019, Advanced Materials Interfaces.

[33]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[34]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[35]  Jongseung Yoon,et al.  Switchable All‐Dielectric Metasurfaces for Full‐Color Reflective Display , 2019, Advanced Optical Materials.

[36]  김창호,et al.  35. , 1991, Maxime Planoudes, Lettres.

[37]  Chem. , 2020, Catalysis from A to Z.

[38]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[39]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.