Vapor explosion phenomena with respect to nuclear reactor safety assessment

An important concern in the analysis of a hypothetical nuclear power reactor accident is an understanding of the consequences of reactor core overheating, leading to fuel melting and subsequent interaction of hot molten fuel with coolant. If such molten fuel-coolant interaction (MFCI) is of limited extent, the resultant work potential is relatively benign. However, as illustrated in Figure 1, it can be envisioned that under certain conditions, core overheating may lead to a sequence of events resulting in the formation of an extensive amount of hot molten fuel in a liquid coolant environment, where such molten fuel may interact with the colder liquid coolant, causing it to vaporize as a result of local heat transfer. If the local heat transfer process is rapid enough (for example, due to fine-scale fuel fragmentation and intermixing with the coolant), the vapor generation process may be extremely fast, such that shock pressurization of the system occurs. If the pressure pulse generated is of sufficient strength, then severe damage to or failure of the reactor vessel may occur. Such a process is often referred to as a “vapor explosion”.

[1]  R. E. Henry A correlation for the minimum film boiling temperature , 1974 .

[2]  J. Hopenfeld,et al.  Onset of stable film boiling and the foam limit , 1963 .

[3]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[4]  D. J. Buchanan,et al.  Self-triggering of small-scale fuel-coolant interactions: I. Experiments , 1976 .

[5]  R. W. Miller,et al.  Report of the SPERT I Destructive Test Program on an Aluminum, Plate-Type, Water-Moderated Reactor , 1964 .

[6]  R. .. Brittan ANALYSIS OF THE EBR-I CORE MELTDOWN , 1958 .

[7]  S. J. Board,et al.  Fragmentation in thermal explosions , 1974 .

[8]  L. Caldarola A theoretical model with variable masses for the molten fuel-sodium thermal interaction in a nuclear fast reactor☆ , 1975 .

[9]  D. Armstrong,et al.  INTERACTION OF SODIUM WITH MOLTEN UO$sub 2$ AND STAINLESS STEEL USING A DROPPING MODE OF CONTACT. , 1971 .

[10]  D. Armstrong,et al.  Explosive Interaction of Molten UO2 and Liquid Sodium , 1976 .

[11]  B. Chalmers Principles of Solidification , 1964 .

[12]  A. W. Cronenberg,et al.  On the Thermodynamic Superheat Limit for Liquid Metals and Its Relation to the Leidenfrost Temperature , 1978 .

[13]  Louis Bernath,et al.  Theory of Bubble Formation in Liquids. , 1952 .

[14]  A. W. Cronenberg,et al.  UO2 solidification phenomena associated with rapid cooling in liquid sodium , 1974 .

[15]  J. D. Fast,et al.  Interaction of metals and gases , 1965 .

[16]  D. J. Buchanan,et al.  Fuel–Coolant Interactions in Submarine Vulcanism , 1973, Nature.

[17]  S. J. Board,et al.  Detonation of fuel coolant explosions , 1975, Nature.

[18]  H. Fauske Mechanism of uranium dioxide--sodium explosive interactions , 1973 .

[19]  Milton S. Plesset,et al.  Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary , 1971, Journal of Fluid Mechanics.

[20]  T. G. Theofanous,et al.  Fragmentation requirements for detonating vapor explosions , 1978 .

[21]  J. F. Jackson,et al.  Recriticality considerations in LMFBR accidents , 1974 .

[22]  G. Johnson,et al.  The solubility of krypton in liquid lead, tin and silver , 1959 .

[23]  D.H. Cho,et al.  RATE-LIMITED MODEL OF MOLTEN FUEL/COOLANT INTERACTIONS: MODEL DEVELOPMENT AND PRELIMINARY CALCULATIONS. , 1970 .

[24]  L. Witte,et al.  Thermal explosion hazards , 1973 .

[25]  Larry C. Witte,et al.  Heat Transfer and Fragmentation During Molten-Metal/Water Interactions , 1973 .

[26]  N. Todreas,et al.  Thermal stress initiated fracture as a fragmentation mechanism in the UO2-sodium fuel-coolant interaction , 1975 .

[27]  Russell B. Mesler,et al.  Metal-Water Explosions , 1968 .

[28]  M.M.K. Farahat TRANSIENT-BOILING HEAT TRANSFER FROM SPHERES TO SODIUM. , 1971 .

[29]  S. Colgate,et al.  Dynamic Mixing of Water and Lava , 1973, Nature.

[30]  John H. Lienhard,et al.  The Dominant Unstable Wavelength and Minimum Heat Flux During Film Boiling on a Horizontal Cylinder , 1964 .

[31]  W. Z̀yszkowski Thermal interaction of molten copper with water , 1975 .

[32]  E. L. Bales,et al.  Water-drop response to sudden accelerations , 1972, Journal of Fluid Mechanics.

[33]  D. J. BUCHANAN,et al.  Mechanism for Vapour Explosions , 1973, Nature.

[34]  C. N. Kelber,et al.  Phenomenological research in LMFBR accident analysis , 1973 .

[35]  J. R. Dietrich,et al.  EXPERIMENTAL INVESTIGATION OF THE SELF-LIMITATION OF POWER DURING REACTIVITY TRANSIENTS IN A SUBCOOLED, WATER-MODERATED REACTOR. Borax-I Experiments, 1954 , 1956 .

[36]  D. J. Buchanan A model for fuel-coolant interactions , 1974 .

[37]  L Caldarola,et al.  A theoretical model for the molten fuel-sodium interaction in a nuclear fast reactor , 1972 .

[38]  A. W. Cronenberg,et al.  A thermal stress mechanism for the fragmentation of molten UO2 upon contact with sodium coolant , 1974 .

[39]  R. Mesler,et al.  MOLTEN METAL-WATER EXPLOSIONS. , 1969 .

[40]  L. Witte,et al.  Destabilization of vapor film boiling around spheres , 1973 .

[41]  J. Hinze Forced deformations of viscous liquid globules , 1949 .

[42]  E. P. Hicks Theoretical studies on the fast reactor maximum accident , 1965 .

[43]  Vijay K. Dhir,et al.  SUBCOOLED FILM-BOILING HEAT TRANSFER FROM SPHERES , 1978 .

[44]  R. Ladisch Comment on fragmentation of UO2 by thermal stress and pressurization , 1977 .

[45]  L. C. Witte,et al.  EXPLOSIVE INTERACTION OF MOLTEN METALS INJECTED INTO WATER. , 1972 .

[46]  A. W. Cronenberg,et al.  Solidification phenomena for UO2, UC, and UN relative to quenching in sodium coolant , 1976 .

[47]  R. W. Wright,et al.  Summary of autoclave TREAT tests on molten-fuel--coolant interactions , 1974 .

[48]  Hiroshi Mizuta,et al.  Fragmentation of Uranium Dioxide after Molten Uranium Dioxide-Sodium Interaction , 1974 .

[49]  Larry C. Witte,et al.  Pressurization of a Solidifying Sphere , 1972 .

[50]  G. Fröhlich,et al.  Experiments with Water and Hot Melts of Lead , 1976 .

[51]  L. S. Tong,et al.  NRC water-reactor safety-research program , 1977 .