Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential.

We report a new strategy to pattern plasmonic nanoparticles into multiplexed one-dimensional arrays based on the spatially modulated electrostatic potential. The 32 nm Au nanoparticles can be simultaneously deposited on one chip with tunable interparticle distance by solely adjusting the width of the grooves. Furthermore, 32 and 13 nm Au nanoparticles can be selectively deposited in grooves of different widths on one chip. As a result, the surface plasmon absorption bands on the chip can be tuned depending on the interparticle distance or the particle size of multiplex 1D arrays, which could enhance the Raman scattering cross section of the adsorbed molecules and result in multiplex surface-enhanced Raman scattering (SERS) response on the chip. This strategy provides a general method to fabricate 1D multiplex arrays with different particle sizes and interparticle distances on one chip.

[1]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[2]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[3]  C. Mirkin,et al.  Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. , 2010, Nano letters.

[4]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[5]  Peidong Yang,et al.  Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. , 2010, Journal of the American Chemical Society.

[6]  H. Fuchs,et al.  One-dimensional arrangement of gold nanoparticles with tunable interparticle distance. , 2009, Small.

[7]  B. Mishra,et al.  Synthesis of Branched Ag Nanoflowers Based on a Bioinspired Technique: Their Surface Enhanced Raman Scattering and Antibacterial Activity , 2009 .

[8]  Moniraj Ghosh,et al.  Oriented Assembly of Metamaterials , 2009, Science.

[9]  C. Mirkin,et al.  Plasmonic focusing in rod-sheath heteronanostructures. , 2009, ACS nano.

[10]  H. Elwing,et al.  Self-arrangement among charge-stabilized gold nanoparticles on a dithiothreitol reactivated octanedithiol monolayer. , 2008, Nano letters.

[11]  T. LaBean,et al.  Single-Electron Transistors made by chemical patterning of silicon dioxide substrates and selective deposition of gold nanoparticles , 2008 .

[12]  B. Draine,et al.  Discrete-dipole approximation for periodic targets: theory and tests. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[14]  Assembly of Nanoparticle Patterns with Single‐Particle Resolution Using DNA‐Mediated Charge Trapping Technique: Method and Applications , 2007 .

[15]  Xiaodong Chen,et al.  Langmuir—Blodgett Patterning: A Bottom—Up Way to Build Mesostructures over Large Areas , 2007 .

[16]  Peidong Yang,et al.  Tunable plasmonic lattices of silver nanocrystals. , 2007, Nature nanotechnology.

[17]  D. Reinhoudt,et al.  Template-directed self-assembly of alkanethiol monolayers: selective growth on preexisting monolayer edges. , 2007, Langmuir.

[18]  David G. Spiller,et al.  Encoded Microcarriers for High‐Throughput Multiplexed Detection , 2007 .

[19]  Chad A Mirkin,et al.  Nanodisk codes. , 2007, Nano letters.

[20]  Sangjun Moon,et al.  Ultrafast patterning of nanoparticles by electrostatic lithography , 2006 .

[21]  J. Jacobson,et al.  Nanoscale patterning on insulating substrates by critical energy electron beam lithography. , 2006, Nano letters.

[22]  Xiaodong Chen,et al.  Hierarchical luminescence patterning based on multiscaled self-assembly. , 2006, Journal of the American Chemical Society.

[23]  I. Ivanova-Stanik,et al.  PIC-MCC method with finite element solver for Poisson equation used in simulation of the breakdown phase in dense plasma focus devices , 2006 .

[24]  P. Yang,et al.  A general method for assembling single colloidal particle lines. , 2006, Nano letters.

[25]  M. Fogler,et al.  Coulomb blockade and transport in a chain of one-dimensional quantum dots. , 2006, Physical review letters.

[26]  Andrea R Tao,et al.  Spontaneous formation of nanoparticle stripe patterns through dewetting , 2005, Nature materials.

[27]  Li Jia,et al.  Dynamic self-assembly of polymer colloids to form linear patterns. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[28]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[29]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[30]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[31]  Mikael T. Björk,et al.  Integration of Colloidal Nanocrystals into Lithographically Patterned Devices , 2004 .

[32]  D. Astruc,et al.  Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum‐Size‐Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. , 2004 .

[33]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 , 2003, 1002.1505.

[34]  J. Rubim,et al.  Surface-Enhanced Resonance Raman (SERR) Spectra of Methylene Blue Adsorbed on a Silver Electrode , 2003 .

[35]  A. Plettl,et al.  A Combined Top–Down/Bottom–Up Approach to the Microscopic Localization of Metallic Nanodots , 2002 .

[36]  Hsueh-Chia Chang,et al.  PROOF COPY 022212PHF Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges , 2002 .

[37]  Herbert Wormeester,et al.  Ionic strength mediated self-organization of gold nanocrystals: An AFM study , 2002 .

[38]  S.-W. Chung,et al.  Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography , 2002, Science.

[39]  Heinrich M. Jaeger,et al.  Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds , 2001, Nature.

[40]  G. Schmid,et al.  Quasi one-dimensional gold cluster arrangements , 2001 .

[41]  Hakho Lee,et al.  Microelectromagnets for the control of magnetic nanoparticles , 2001 .

[42]  R. Penner,et al.  Molybdenum nanowires by electrodeposition. , 2000, Science.

[43]  Kam,et al.  General electromagnetic density of modes for a one-dimensional photonic crystal , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10) , 2000, astro-ph/0008151.

[45]  Peter P. Edwards,et al.  Metal nanoparticles and their assemblies , 2000 .

[46]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[47]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[48]  A. L. Loeb,et al.  The electrical double layer around a spherical colloid particle , 1961 .