Spatiotemporal and statistical symmetries

The notion of symmetries, either statistical or deterministic, can be useful for the characterization of complex systems and their bifurcations. In this paper, we investigate the connection between the (microscopic) spatiotemporal symmetries of a space-time functionu(x, t), on the one hand, and the (macroscopic) symmetries of statistical quantities such as the spatial (resp. temporal) two-point correlations and the spatial (resp. temporal) average, on the other hand. We show, how, under certain conditions, these symmetries are related to the symmetries of the orbits described byu(x, t) in the characteristic (phase) spaces. We also determine the largest group of spatiotemporal symmetries (in the sense introduced in our earlier work) satisfied by a given space-time functionu(x, t) and indicate how to extract the subgroups of point symmetries, namely those directly implemented on the space and time variables. Conversely, we determine all the functions invariant by a given space-time symmetry group. Finally, we illustrate all the previous points with specific examples.

[1]  Paul Manneville,et al.  Dissipative Structures and Weak Turbulence , 1995 .

[2]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[3]  Tosio Kato Perturbation theory for linear operators , 1966 .

[4]  J. Lumley Stochastic tools in turbulence , 1970 .

[5]  Nadine Aubry,et al.  Mode interaction models for near-wall turbulence , 1992, Journal of Fluid Mechanics.

[6]  R. Lima,et al.  Wave propagation phenomena from a spatiotemporal viewpoint: Resonances and bifurcations , 1994 .

[7]  P. Halmos Lectures on ergodic theory , 1956 .

[8]  Nadine Aubry,et al.  Spatiotemporal analysis of complex signals: Theory and applications , 1991 .

[9]  S. Ciliberto,et al.  Thermodynamic aspects of the transition to spatiotemporal chaos , 1992 .

[10]  R. Lima Describing the dynamics with a bi-orthogonal decomposition. , 1992, Chaos.

[11]  Liu,et al.  Onset of spatially chaotic waves on flowing films. , 1993, Physical review letters.

[12]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[13]  N. Aubry,et al.  Transition to turbulence on a rotating flat disk , 1994 .

[14]  Michel Loève,et al.  Probability Theory I , 1977 .

[15]  P. Ghez,et al.  $W^\ast$-categories. , 1985 .

[16]  From temporal chaos towards spatial effects , 1987 .

[17]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[18]  Gollub,et al.  Time averaging of chaotic spatiotemporal wave patterns. , 1993, Physical review letters.

[19]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[20]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[21]  Nadine Aubry,et al.  Characterization of dispersive chaos and related states of binary-fluid convection , 1995 .

[22]  J. Gollub,et al.  Order-disorder transition in capillary ripples. , 1989, Physical review letters.

[23]  Greenleaf,et al.  Invariant Means on Topological Groups , 1969 .

[24]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[25]  Michael Dellnitz,et al.  Symmetry of attractors and the Karhunen-Loegve decomposition , 1994 .

[26]  Lawrence Sirovich,et al.  Turbulent thermal convection in a finite domain: Part I. Theory , 1990 .

[27]  J. Gollub,et al.  Space-time description of the splitting and coalescence of wave fronts in film flows , 1996 .

[28]  R. Courant,et al.  Methoden der mathematischen Physik , .

[29]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[30]  Hu,et al.  Spatial and temporal averages in chaotic patterns. , 1993, Physical review letters.

[31]  Nadine Aubry,et al.  The dynamics of spatiotemporal modulations. , 1995, Chaos.

[32]  Williams,et al.  Dispersive chaos in one-dimensional traveling-wave convection. , 1990, Physical review letters.

[33]  Lawrence Sirovich,et al.  Turbulent thermal convection in a finite domain: Part II. Numerical results , 1990 .

[34]  Nadine Aubry,et al.  On The Hidden Beauty of the Proper Orthogonal Decomposition , 1991 .

[35]  Michael Danos,et al.  The Mathematical Foundations of Quantum Mechanics , 1964 .

[36]  Nadine Aubry,et al.  Spatio-temporal symmetries and bifurcations via bi-orthogonal decompositions , 1992 .

[37]  Pierre Collet,et al.  Instabilities and fronts in extended systems , 1990 .

[38]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[39]  Joceline C Lega,et al.  Defect-mediated turbulence in wave patterns , 1988 .