Feasibility of using hollow double walled Mn2O3 nanocubes for hybrid Na-air battery

[1]  Alicia Koo,et al.  A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries , 2019, Applied Catalysis B: Environmental.

[2]  Hyunhyub Ko,et al.  Binary N,S-doped carbon nanospheres from bio-inspired artificial melanosomes: A route to efficient air electrodes for seawater batteries , 2018 .

[3]  Zhongbo Hu,et al.  CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O2 Battery , 2018, ACS Catalysis.

[4]  M. Ashokkumar,et al.  Recent development on carbon based heterostructures for their applications in energy and environment: A review , 2018, Journal of Industrial and Engineering Chemistry.

[5]  Y. Bando,et al.  Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes , 2018 .

[6]  Moo Hwan Cho,et al.  Facile Synthesis of SnS2 Nanostructures with Different Morphologies for High-Performance Supercapacitor Applications , 2018, ACS omega.

[7]  L. Gu,et al.  Enhancing the Catalytic Activity of Co3O4 for Li–O2 Batteries through the Synergy of Surface/Interface/Doping Engineering , 2018 .

[8]  A. Biris,et al.  Chitosan‐Derived NiO‐Mn2O3/C Nanocomposites as Non‐Precious Catalysts for Enhanced Oxygen Reduction Reaction , 2018 .

[9]  S. T. Senthilkumar,et al.  Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries , 2017 .

[10]  Zhongbo Hu,et al.  An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability , 2017 .

[11]  X. Sun,et al.  Dual–phase Spinel MnCo2O4 Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na–Air Batteries , 2017 .

[12]  Hyunhyub Ko,et al.  Redox‐Additive‐Enhanced High Capacitance Supercapacitors Based on Co2P2O7 Nanosheets , 2017 .

[13]  M. Jansen,et al.  Mechanistic origin of low polarization in aprotic Na-O2 batteries. , 2017, Physical chemistry chemical physics : PCCP.

[14]  Hyunhyub Ko,et al.  Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na–air battery , 2017 .

[15]  X. Lou,et al.  Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries , 2016 .

[16]  Soo Min Hwang,et al.  Hierarchical urchin-shaped α-MnO 2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na–air battery , 2016 .

[17]  Hyunhyub Ko,et al.  Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery , 2016 .

[18]  D. Brett,et al.  A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability , 2016 .

[19]  W. Goddard,et al.  Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals , 2016, Proceedings of the National Academy of Sciences.

[20]  Katsuro Hayashi,et al.  Aqueous and Nonaqueous Sodium-Air Cells with Nanoporous Gold Cathode , 2015 .

[21]  Dan Wang,et al.  Multi-shelled hollow micro-/nanostructures. , 2015, Chemical Society reviews.

[22]  Tao Zhang,et al.  Superior Performance of a Li–O2 Battery with Metallic RuO2 Hollow Spheres as the Carbon‐Free Cathode , 2015 .

[23]  Christopher S. Johnson,et al.  Rechargeable Seawater Battery and Its Electrochemical Mechanism , 2015 .

[24]  B. Su,et al.  Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG) , 2015 .

[25]  Wenyao Li,et al.  Facile synthesis of porous Mn2O3 nanocubics for high-rate supercapacitors , 2015 .

[26]  Mengqing Xu,et al.  Triple-shelled Mn2O3 hollow nanocubes: force-induced synthesis and excellent performance as the anode in lithium-ion batteries , 2014 .

[27]  Robert Gross,et al.  The future of lithium availability for electric vehicle batteries , 2014 .

[28]  P. Bogdanoff,et al.  Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water , 2014 .

[29]  Shyue Ping Ong,et al.  Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries. , 2014, Nano letters.

[30]  F. Wang,et al.  Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries , 2013, Scientific Reports.

[31]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[32]  M. Mitrić,et al.  Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media , 2012 .

[33]  J. Travas-sejdic,et al.  High-performance charge storage by N-containing nanostructured carbon derived from polyaniline , 2012 .

[34]  M. Mitrić,et al.  Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties , 2012 .

[35]  X. Lou,et al.  Double‐Shelled CoMn2O4 Hollow Microcubes as High‐Capacity Anodes for Lithium‐Ion Batteries , 2012, Advanced materials.

[36]  J. Wilcox,et al.  Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles , 2012 .

[37]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[38]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[39]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[40]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[41]  M. Salavati‐Niasari,et al.  Fabrication of chain-like Mn2O3 nanostructures via thermal decomposition of manganese phthalate coordination polymers , 2009 .

[42]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[43]  E. Ticianelli,et al.  Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction , 2007 .

[44]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[45]  M. R. Palacín,et al.  On the Reliability of Half-Cell Tests for Monovalent (Li+, Na+) and Divalent (Mg2+, Ca2+) Cation Based Batteries , 2017 .

[46]  Katsuro Hayashi,et al.  A High-Energy-Density Mixed-Aprotic-Aqueous Sodium-Air Cell with a Ceramic Separator and a Porous Carbon Electrode , 2015 .

[47]  Nobuyuki Imanishi,et al.  Rechargeable lithium–air batteries: characteristics and prospects , 2014 .

[48]  K. Hayashi,et al.  A Mixed Aqueous/Aprotic Sodium/Air Cell Using a NASICON Ceramic Separator , 2013 .

[49]  P. Sun,et al.  Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3 , 2009 .