Mining and Representing User Interests: The Case of Tagging Practices

Social tagging in online communities has become an important method for reflecting classified thoughts of individual users. A number of social Web sites provide tagging functionalities and also offer folksonomies within or across the sites. However, it is practically not easy to find users' interests based on such folksonomies. In this paper, we provide a novel approach for clustering user-centric interests by analyzing tagging practices of individual users. To do this, we collect Really Simple Syndication data from blogosphere, find conceptual clusters using formal concept analysis, and then evaluate the significance of these clusters. The results of the empirical evaluation show that we can effectively recommend different collections of tags to an individual or a set of users.

[1]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[2]  John G. Breslin,et al.  Representing and sharing folksonomies with semantics , 2009, J. Inf. Sci..

[3]  John G. Breslin,et al.  The Future of Social Networks on the Internet: The Need for Semantics , 2007, IEEE Internet Computing.

[4]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[5]  John G. Breslin,et al.  The State of the Art in Tag Ontologies: A Semantic Model for Tagging and Folksonomies , 2008, Dublin Core Conference.

[6]  Uta Priss,et al.  Formal concept analysis in information science , 2006, Annu. Rev. Inf. Sci. Technol..

[7]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[8]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[9]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[10]  Valentin Robu,et al.  The complex dynamics of collaborative tagging , 2007, WWW '07.

[11]  Jeremy J. Carroll,et al.  Resource description framework (rdf) concepts and abstract syntax , 2003 .

[12]  Peter Øhrstrøm,et al.  Working with Conceptual Structures - Contributions to ICCS 2000 , 2000 .

[13]  Vassilios Peristeras,et al.  Interlinking the Social Web with Semantics , 2008, IEEE Intelligent Systems.

[14]  Anne Berry,et al.  A local approach to concept generation , 2007, Annals of Mathematics and Artificial Intelligence.

[15]  Derrick G. Kourie,et al.  An incremental algorithm to construct a lattice of set intersections , 2009, Sci. Comput. Program..

[16]  John G. Breslin,et al.  Social semantic cloud of tags: semantic model for folksonomies , 2010 .

[17]  Thomas Tilley Tool Support for FCA , 2004, ICFCA.

[18]  Peter W. Eklund,et al.  From Concepts to Concept Lattice: A Border Algorithm for Making Covers Explicit , 2008, ICFCA.

[19]  Christian Lindig Fast Concept Analysis , 2000 .

[20]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[21]  Karin Knorr Cetina,et al.  The market as an object of attachment : Exploring postsocial relations in financial markets , 2000 .

[22]  John G. Breslin,et al.  Review and Alignment of Tag Ontologies for Semantically-Linked Data in Collaborative Tagging Spaces , 2008, 2008 IEEE International Conference on Semantic Computing.

[23]  Bernhard Ganter,et al.  Stepwise Construction of the Dedekind-MacNeille Completion (Research Note) , 1998, ICCS.

[24]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[25]  Tim Berners-Lee,et al.  Linked data , 2020, Semantic Web for the Working Ontologist.

[26]  Ravi Kumar,et al.  Visualizing tags over time , 2006, WWW '06.

[27]  Thomas Gruber,et al.  Ontology of Folksonomy: A Mash-Up of Apples and Oranges , 2007, Int. J. Semantic Web Inf. Syst..

[28]  Petko Valtchev,et al.  Similarity based Clustering versus Galois lattice building Strengths and Weaknesses , 2000 .

[29]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[30]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[31]  Lc Freeman,et al.  USING GALOIS LATTICES TO REPRESENT NETWORK DATA , 1993 .

[32]  Hong-Gee Kim,et al.  FCA-based approach for mining contextualized folksonomy , 2007, SAC '07.

[33]  Gerd Stumme,et al.  Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods , 1998, PKDD.

[34]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[35]  Camille Roth,et al.  Co-evolution in Epistemic Networks: Reconstructing Social Complex Systems - A Summary Presentation , 2005 .

[36]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[37]  John Scott What is social network analysis , 2010 .