Assessing the Conformational Equilibrium of Carboxylic Acid via Quantum Mechanical and Molecular Dynamics Studies on Acetic Acid

Accurate hydrogen placement in molecular modeling is crucial for studying the interactions and dynamics of biomolecular systems. The carboxyl functional group is a prototypical example of a functional group that requires protonation during structure preparation. To our knowledge, when in their neutral form, carboxylic acids are typically protonated in the syn conformation by default in classical molecular modeling packages, with no consideration of alternative conformations, though we are not aware of any careful examination of this topic. Here, we investigate the general belief that carboxylic acids should always be protonated in the syn conformation. We calculate and compare the relative energetic stabilities of syn and anti acetic acid using ab initio quantum mechanical calculations and atomistic molecular dynamics simulations. We focus on the carboxyl torsional potential and configurations of microhydrated acetic acid from molecular dynamics simulations, probing the effects of solvent, force field (GAFF vs GAFF2), and partial charge assignment of acetic acid. We show that while the syn conformation is the preferred state, the anti state may in some cases also be present under normal NPT conditions in solution.

[1]  Organic acids tunably catalyze carbonic acid decomposition. , 2014, The journal of physical chemistry. A.

[2]  K. Dill,et al.  Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". , 2009, Structure.

[3]  Gautam R Desiraju,et al.  Crystal engineering: from molecule to crystal. , 2013, Journal of the American Chemical Society.

[4]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[5]  Niel M. Henriksen,et al.  Data-Driven Mapping of Gas-Phase Quantum Calculations to General Force Field Lennard-Jones Parameters. , 2020, Journal of chemical theory and computation.

[6]  J. L. Derissen,et al.  A reinvestigation of the molecular structure of acetic acid monomer and dimer by gas electron diffraction , 1971 .

[7]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[8]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[9]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[10]  M. Dračínský,et al.  Dimerization of Acetic Acid in the Gas Phase—NMR Experiments and Quantum-Chemical Calculations , 2020, Molecules.

[11]  C. Pace,et al.  pK values of the ionizable groups of proteins , 2006, Protein science : a publication of the Protein Society.

[12]  Philip C. Biggin,et al.  Quantifying Water-Mediated Protein–Ligand Interactions in a Glutamate Receptor: A DFT Study , 2011, The journal of physical chemistry. B.

[13]  M. Gilson,et al.  Prediction of pH-dependent properties of proteins. , 1994, Journal of molecular biology.

[14]  M Karplus,et al.  Improving the accuracy of protein pKa calculations: Conformational averaging versus the average structure , 1998, Proteins.

[15]  M. Lill,et al.  Proton shuttle in green fluorescent protein studied by dynamic simulations , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. K. Maity,et al.  Microhydration of Neutral and Charged Acetic Acid. , 2017, The journal of physical chemistry. A.

[17]  David A. Case,et al.  Including Side Chain Flexibility in Continuum Electrostatic Calculations of Protein Titration , 1996 .

[18]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[19]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[20]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[21]  Thomas A. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996, J. Comput. Chem..

[22]  T. Lassila,et al.  Toxicity of Carboxylic Acid-Containing Drugs: The Role of Acyl Migration and CoA Conjugation Investigated. , 2015, Chemical research in toxicology.

[23]  M. Karplus,et al.  pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. , 1990, Biochemistry.

[24]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[25]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[26]  Thomas A. Halgren MMFF VI. MMFF94s option for energy minimization studies , 1999, J. Comput. Chem..

[27]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[28]  M. Gilson,et al.  The determinants of pKas in proteins. , 1996, Biochemistry.

[29]  Thomas A. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[30]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[31]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[32]  Junjun Mao,et al.  MCCE2: Improving protein pKa calculations with extensive side chain rotamer sampling , 2009, J. Comput. Chem..

[33]  J. Chocholousová,et al.  Acetic Acid Dimer in the Gas Phase, Nonpolar Solvent, Microhydrated Environment, and Dilute and Concentrated Acetic Acid: Ab Initio Quantum Chemical and Molecular Dynamics Simulations , 2003 .

[34]  Jeffrey J. Gray,et al.  Rapid calculation of protein pKa values using Rosetta. , 2012, Biophysical journal.

[35]  P Timmins,et al.  Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs , 2012, Drug development and industrial pharmacy.

[36]  H. Lischka,et al.  The stability of the acetic acid dimer in microhydrated environments and in aqueous solution. , 2012, Physical chemistry chemical physics : PCCP.

[37]  A. Klamt,et al.  Refinement and Parametrization of COSMO-RS , 1998 .

[38]  Kenneth B. Wiberg,et al.  Barriers to rotation adjacent to double bonds. 3. The carbon-oxygen barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide resonance , 1987 .

[39]  T. N. Guru Row,et al.  Syn vs Anti Carboxylic Acids in Hybrid Peptides: Experimental and Theoretical Charge Density and Chemical Bonding Analysis. , 2018, The journal of physical chemistry. A.

[40]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[41]  Frank Neese,et al.  Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS). , 2006, The journal of physical chemistry. A.

[42]  David L. Mobley,et al.  Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations , 2010, J. Comput. Aided Mol. Des..

[43]  P. Nagy The syn–anti equilibrium for the COOH group reinvestigated. Theoretical conformation analysis for acetic acid in the gas phase and in solution , 2013 .

[44]  C. Rowley,et al.  Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. , 2014, The journal of physical chemistry. A.

[45]  J. Warwicker,et al.  Simplified methods for pKa and acid pH‐dependent stability estimation in proteins: Removing dielectric and counterion boundaries , 2008, Protein science : a publication of the Protein Society.

[46]  P. Auffinger,et al.  A comprehensive classification and nomenclature of carboxyl–carboxyl(ate) supramolecular motifs and related catemers: implications for biomolecular systems , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[47]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[48]  T. Straatsma,et al.  Dynamic protonation equilibrium of solvated acetic acid. , 2007, Angewandte Chemie.

[49]  Aeri Park,et al.  Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API , 2006, Pharmaceutical Research.

[50]  K. Sharp,et al.  On the calculation of pKas in proteins , 1993, Proteins.

[51]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[52]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[53]  A. Klamt,et al.  Fast solvent screening via quantum chemistry: COSMO‐RS approach , 2002 .

[54]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[55]  Thomas A. Halgren Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[56]  K. Leung,et al.  Hydrogen-bonding interactions in acetic acid monohydrates and dihydrates by density-functional theory calculations. , 2005, The Journal of chemical physics.

[57]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[58]  Peter I. Nagy,et al.  Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution , 2014, International journal of molecular sciences.

[59]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[60]  C. Scharnagl,et al.  Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. , 1999, Biophysical journal.

[61]  B. Ouyang,et al.  The monohydrate and dihydrate of acetic acid: a high-resolution microwave spectroscopic study. , 2009, Physical chemistry chemical physics : PCCP.