Stereotyped connectivity and computations in higher-order olfactory neurons

In the first brain relay of the olfactory system, odors are encoded by combinations of glomeruli, but it is not known how glomerular signals are ultimately integrated. In Drosophila melanogaster, the majority of glomerular projections target the lateral horn. Here we show that lateral horn neurons (LHNs) receive input from sparse and stereotyped combinations of glomeruli that are coactivated by odors, and certain combinations of glomeruli are over-represented. One morphological LHN type is broadly tuned and sums input from multiple glomeruli. These neurons have a broader dynamic range than their individual glomerular inputs do. By contrast, a second morphological type is narrowly tuned and receives prominent odor-selective inhibition through both direct and indirect pathways. We show that this wiring scheme confers increased selectivity. The biased stereotyped connectivity of the lateral horn contrasts with the probabilistic wiring of the mushroom body, reflecting the distinct roles of these regions in innate as compared to learned behaviors.

[1]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[2]  E. Yaksi,et al.  Electrical Coupling between Olfactory Glomeruli , 2010, Neuron.

[3]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[4]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[5]  Reinhard F. Stocker,et al.  The organization of the chemosensory system in Drosophila melanogaster: a rewiew , 2004, Cell and Tissue Research.

[6]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[7]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[8]  Liang Liang,et al.  GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons , 2013, Neuron.

[9]  Pavan Ramdya,et al.  Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems , 2011, The Journal of Neuroscience.

[10]  M Heisenberg,et al.  Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. , 1994, Science.

[11]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[12]  Matthieu Louis,et al.  A circuit supporting concentration-invariant odor perception in Drosophila , 2009, Journal of biology.

[13]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[14]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[15]  Gilles Laurent,et al.  Testing Odor Response Stereotypy in the Drosophila Mushroom Body , 2008, Neuron.

[16]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[17]  Kei Ito,et al.  Organization of antennal lobe‐associated neurons in adult Drosophila melanogaster brain , 2012, The Journal of comparative neurology.

[18]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[19]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[20]  S. R. Datta,et al.  Distinct representations of olfactory information in different cortical centres , 2011, Nature.

[21]  Cori Bargmann Comparative chemosensation from receptors to ecology , 2006, Nature.

[22]  Tim Tully,et al.  Associative Learning Disrupted by Impaired Gs Signaling in Drosophila Mushroom Bodies , 1996, Science.

[23]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[24]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[25]  Gero Miesenböck,et al.  Odor Discrimination in Drosophila: From Neural Population Codes to Behavior , 2013, Neuron.

[26]  M. Stopfer,et al.  Functional Analysis of a Higher Olfactory Center, the Lateral Horn , 2012, The Journal of Neuroscience.

[27]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[28]  N. K. Tanaka,et al.  Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[30]  S. Lockery,et al.  Pressure polishing: a method for re-shaping patch pipettes during fire polishing , 2000, Journal of Neuroscience Methods.

[31]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[32]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[33]  Barry J. Dickson,et al.  The Drosophila pheromone cVA activates a sexually dimorphic neural circuit , 2008, Nature.

[34]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[35]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[36]  R. Benton,et al.  Acid sensing by the Drosophila olfactory system , 2010, Nature.

[37]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[38]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[39]  Alexander Borst,et al.  Computation of olfactory signals inDrosophila melanogaster , 1983, Journal of comparative physiology.

[40]  L. Abbott,et al.  Generating sparse and selective third-order responses in the olfactory system of the fly , 2010, Proceedings of the National Academy of Sciences.

[41]  Ann-Shyn Chiang,et al.  A Map of Olfactory Representation in the Drosophila Mushroom Body , 2007, Cell.

[42]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[43]  Nicolas Y. Masse,et al.  Olfactory Information Processing in Drosophila , 2009, Current Biology.

[44]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[45]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[46]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[47]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[48]  E. Kinney Primer of Biostatistics , 1987 .

[49]  Ariane Ramaekers,et al.  Developmental origin of wiring specificity in the olfactory system of Drosophila , 2004, Development.