Fault-tolerant A/D converter using analogue voting

Analogue and digital circuits are both prone to failure because of device degradations, transient upsets and large parametric variations. Redundancy techniques, such as N-tuple modular redundancy, have been widely used to correct faulty behaviour of components and achieve high reliability for digital circuits. In this study, the authors propose a redundancy based fault-tolerant methodology for analogue circuits. In particular, the authors focus on highly reliable analogue-to-digital converter, which is a critical component in many mixed-signal systems. The authors methodology employs redundant analogue blocks and chooses the best result using an innovative analogue voter. Simulation results are reported to verify the concepts, measure the system's reliability and trade off reliability against cost and power.

[1]  Jianbo Gao,et al.  Toward hardware-redundant, fault-tolerant logic for nanoelectronics , 2005, IEEE Design & Test of Computers.

[2]  Beichelt Frank,et al.  IEEE Trans. Reliab. , 1992 .

[3]  G. Van der Plas,et al.  A 7.6 mW 1.75 GS/s 5 bit flash A/D converter in 90 nm digital CMOS , 2008, 2008 IEEE Symposium on VLSI Circuits.

[4]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[5]  Bapiraju Vinnakota,et al.  The design of analog self-checking circuits , 1994, Proceedings of 7th International Conference on VLSI Design.

[6]  Douglas M. Blough,et al.  A comparison of voting strategies for fault-tolerant distributed systems , 1990, Proceedings Ninth Symposium on Reliable Distributed Systems.

[7]  Jukka Paakki A Practical Implementation of DCGs (Abstract) , 1990, CC.

[8]  L. Singer,et al.  A 3 V 340 mW 14 b 75 MSPS CMOS ADC with 85 dB SFDR at Nyquist , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[9]  Israel Koren,et al.  A self-correcting active pixel camera , 2000, Proceedings IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.

[10]  Un-Ku Moon,et al.  Background digital calibration techniques for pipelined ADCs , 1997 .

[11]  Louis Nashelsky,et al.  Electronic Devices and Circuit Theory , 1972 .

[12]  Shekhar Y. Borkar,et al.  Designing reliable systems from unreliable components: the challenges of transistor variability and degradation , 2005, IEEE Micro.

[13]  S. Roy,et al.  Majority multiplexing-economical redundant fault-tolerant designs for nanoarchitectures , 2005, IEEE Transactions on Nanotechnology.

[14]  Denis C. Daly,et al.  A 6-bit, 0.2 V to 0.9 V Highly Digital Flash ADC With Comparator Redundancy , 2009, IEEE Journal of Solid-State Circuits.

[15]  Israel Koren,et al.  Fault-sensitivity analysis and reliability enhancement of analog-to-digital converters , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[16]  Luigi Carro,et al.  Spare Parts in Analog Circuits: a Filter Example , 2007, 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007).

[17]  Resve Saleh,et al.  Simulation and analysis of transient faults in digital circuits , 1992 .

[18]  Rick Hanson Spare parts. , 1968, Tic.

[19]  Atila Alvandpour,et al.  A 6-bit 2.5-GS/s flash ADC using comparator redundancy for low power in 90 nm CMOS , 2010 .

[20]  Luigi Carro,et al.  Going Beyond TMR for Protection Against Multiple Faults , 2005, 2005 18th Symposium on Integrated Circuits and Systems Design.

[21]  B. Parhami Voting networks , 1991 .

[22]  Salvador Mir,et al.  Design of self-checking fully differential circuits and boards , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[23]  Wenhua Yang,et al.  A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input , 2001, IEEE J. Solid State Circuits.

[24]  A. Karanicolas,et al.  A 15-b 1-Msample/s digitally self-calibrated pipeline ADC , 1993 .

[25]  M. Nourani,et al.  Scalable mean voting mechanism for fault tolerant analog circuits , 2009, 2009 4th International Design and Test Workshop (IDT).