Radial basis function interpolation in the limit of increasingly flat basis functions
暂无分享,去创建一个
[1] Michael Scheuerer,et al. An alternative procedure for selecting a good value for the parameter c in RBF-interpolation , 2011, Adv. Comput. Math..
[2] Charles A. Micchelli,et al. On Convergence of Flat Multivariate Interpolation by Translation Kernels with Finite Smoothness , 2014 .
[3] R. Franke. A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .
[4] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .
[5] B. Fornberg,et al. Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .
[6] Manuel Kindelan,et al. Laurent expansion of the inverse of perturbed, singular matrices , 2015, J. Comput. Phys..
[7] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .
[8] Bengt Fornberg,et al. Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..
[9] Zongmin Wu,et al. Local error estimates for radial basis function interpolation of scattered data , 1993 .
[10] Marjan Uddin,et al. On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method , 2014 .
[11] B. Fornberg,et al. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .
[12] Y. V. S. S. Sanyasiraju,et al. On optimization of the RBF shape parameter in a grid-free local scheme for convection dominated problems over non-uniform centers , 2013 .
[13] C.M.C. Roque,et al. Numerical experiments on optimal shape parameters for radial basis functions , 2009 .
[14] Manuel Kindelan,et al. Laurent series based RBF-FD method to avoid ill-conditioning , 2015 .
[15] Gang Joon Yoon,et al. Convergence of Increasingly Flat Radial Basis Interpolants to Polynomial Interpolants , 2007, SIAM J. Math. Anal..
[16] Erik Lehto,et al. Rotational transport on a sphere: Local node refinement with radial basis functions , 2010, J. Comput. Phys..
[17] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[18] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[19] Randall J. LeVeque,et al. Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .
[20] Manuel Kindelan,et al. RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..
[21] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[22] Robert Schaback,et al. Limit problems for interpolation by analytic radial basis functions , 2008 .
[23] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[24] M. Buhmann,et al. Limits of radial basis function interpolants , 2007 .
[25] Bengt Fornberg,et al. Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..
[26] Charles A. Micchelli,et al. A study on multivariate interpolation by increasingly flat kernel functions , 2015 .
[27] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[28] B. Fornberg,et al. Radial basis functions: Developments and applications to planetary scale flows , 2011 .
[29] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[30] Bengt Fornberg,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .
[31] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[32] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .