Radial basis function interpolation in the limit of increasingly flat basis functions

Abstract We propose a new approach to study Radial Basis Function (RBF) interpolation in the limit of increasingly flat functions. The new approach is based on the semi-analytical computation of the Laurent series of the inverse of the RBF interpolation matrix described in a previous paper [3] . Once the Laurent series is obtained, it can be used to compute the limiting polynomial interpolant, the optimal shape parameter of the RBFs used for interpolation, and the weights of RBF finite difference formulas, among other things.

[1]  Michael Scheuerer,et al.  An alternative procedure for selecting a good value for the parameter c in RBF-interpolation , 2011, Adv. Comput. Math..

[2]  Charles A. Micchelli,et al.  On Convergence of Flat Multivariate Interpolation by Translation Kernels with Finite Smoothness , 2014 .

[3]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[4]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[5]  B. Fornberg,et al.  Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .

[6]  Manuel Kindelan,et al.  Laurent expansion of the inverse of perturbed, singular matrices , 2015, J. Comput. Phys..

[7]  R. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .

[8]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[9]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[10]  Marjan Uddin,et al.  On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method , 2014 .

[11]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[12]  Y. V. S. S. Sanyasiraju,et al.  On optimization of the RBF shape parameter in a grid-free local scheme for convection dominated problems over non-uniform centers , 2013 .

[13]  C.M.C. Roque,et al.  Numerical experiments on optimal shape parameters for radial basis functions , 2009 .

[14]  Manuel Kindelan,et al.  Laurent series based RBF-FD method to avoid ill-conditioning , 2015 .

[15]  Gang Joon Yoon,et al.  Convergence of Increasingly Flat Radial Basis Interpolants to Polynomial Interpolants , 2007, SIAM J. Math. Anal..

[16]  Erik Lehto,et al.  Rotational transport on a sphere: Local node refinement with radial basis functions , 2010, J. Comput. Phys..

[17]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[18]  Bengt Fornberg,et al.  A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..

[19]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[20]  Manuel Kindelan,et al.  RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..

[21]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[22]  Robert Schaback,et al.  Limit problems for interpolation by analytic radial basis functions , 2008 .

[23]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[24]  M. Buhmann,et al.  Limits of radial basis function interpolants , 2007 .

[25]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[26]  Charles A. Micchelli,et al.  A study on multivariate interpolation by increasingly flat kernel functions , 2015 .

[27]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[28]  B. Fornberg,et al.  Radial basis functions: Developments and applications to planetary scale flows , 2011 .

[29]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[30]  Bengt Fornberg,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .

[31]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[32]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .