Huygens (and others) revisited.

We develop a generic iterative map model of coupled oscillators based on simple physical processes common to many such systems. The model allows us to understand, from a unified perspective, the range of different outcomes reported for experiments by Huygens and modern realizations of his two coupled clocks.

[1]  A. Edwards,et al.  Sync-how order emerges from chaos in the universe, nature, and daily life , 2005 .

[2]  Christiaan Huygens,et al.  Oeuvres complètes de Christiaan Huygens , 1969 .

[3]  J. Pantaleone,et al.  Synchronization of metronomes , 2002 .

[4]  Ulrich Parlitz,et al.  Synchronization and chaotic dynamics of coupled mechanical metronomes. , 2009, Chaos.

[5]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[6]  Przemyslaw Perlikowski,et al.  Clustering of Huygens' Clocks , 2009 .

[7]  Gian Antonio Mian,et al.  Feedback control in ancient water and mechanical clocks , 1992 .

[8]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[9]  A. Pikovsky,et al.  Synchronization: Theory and Application , 2003 .

[10]  T. Kapitaniak,et al.  Why two clocks synchronize: energy balance of the synchronized clocks. , 2011, Chaos.

[11]  Steven H. Strogatz,et al.  Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life , 2004 .

[12]  Rui Dilão,et al.  Antiphase and in-phase synchronization of nonlinear oscillators: the Huygens's clocks system. , 2009, Chaos.

[13]  Heidi M. Rockwood,et al.  Huygens's clocks , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Przemyslaw Perlikowski,et al.  Clustering and synchronization of n Huygens’ clocks , 2009 .

[15]  Henk J. M. Bos,et al.  Christiaan Huygens' the pendulum clock, or, Geometrical demonstrations concerning the motion of pendula as applied to clocks , 1986 .