Some recent theory for autoregressive count time series

In this paper an overview is given over recent theoretical developments in autoregressive count time series. The focus is on generalized autoregressive models where the autoregressive structure is incorporated via a link function. Starting from an ordinary autoregressive model the difficulties in extending standard theory of statistical inference to count time series are highlighted. Special attention is given to the issues of ergodicity and asymptotic theory of estimation. Two main approaches are mentioned, a perturbation approach and the use of a weak dependence concept. The main emphasis is on the former. Linear as well as log-linear and nonlinear models are treated. It is argued that the developed theory forms a necessary basis for modelling and application of these count time series. The setting of the paper is one of simple models and conditional distributions of Poisson type. But it is claimed that the framework is general enough to handle many extensions with an accompanying flexibility in applications of these models.

[1]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[2]  Tina Hviid Rydberg,et al.  A Modelling Framework for the Prices and Times of Trades Made on the New York Stock Exchange , 1999 .

[3]  Siem Jan Koopman,et al.  Estimation of stochastic volatility models via Monte Carlo maximum likelihood , 1998 .

[4]  Benjamin Kedem,et al.  Regression Models for Time Series Analysis: Kedem/Time Series Analysis , 2005 .

[5]  Robert C. Jung,et al.  Dynamic Factor Models for Multivariate Count Data: An Application to Stock-Market Trading Activity , 2008 .

[6]  Thomas Mikosch,et al.  Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach , 2006 .

[7]  Timo Teräsvirta,et al.  Modelling nonlinear economic time series , 2010 .

[8]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[9]  S. Zeger A regression model for time series of counts , 1988 .

[10]  K. Fokianos Count Time Series Models , 2012 .

[11]  Andréas Heinen,et al.  Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .

[12]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[13]  Claudia Czado,et al.  Predictive Model Assessment for Count Data , 2009, Biometrics.

[14]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[15]  Donald W. K. Andrews NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .

[16]  W. Dunsmuir,et al.  Observation-driven models for Poisson counts , 2003 .

[17]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[18]  Peter J. Bickel,et al.  A new mixing notion and functional central limit theorems for a sieve bootstrap in time series , 1999 .

[19]  K. Fokianos,et al.  Interventions in INGARCH processes , 2010 .

[20]  Gael M. Martin,et al.  Optimal Probabilistic Forecasts for Counts , 2009 .

[21]  Pentti Saikkonen,et al.  ERGODICITY, MIXING, AND EXISTENCE OF MOMENTS OF A CLASS OF MARKOV MODELS WITH APPLICATIONS TO GARCH AND ACD MODELS , 2008, Econometric Theory.

[22]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[23]  Robert Lund,et al.  A new look at time series of counts , 2009 .

[24]  W. Li,et al.  On the autopersistence functions and the autopersistence graphs of binary autoregressive time series , 2011 .

[25]  Piotr Kokoszka,et al.  GARCH processes: structure and estimation , 2003 .

[26]  Michael H. Neumann,et al.  The notion of ψ -weak dependence and its applications to bootstrapping time series , 2008, 0806.4263.

[27]  Michael H. Neumann Absolute regularity and ergodicity of Poisson count processes , 2011, 1201.1071.

[28]  Tuan Pham,et al.  Some mixing properties of time series models , 1985 .

[29]  D. Tjøstheim Non-linear time series and Markov chains , 1990, Advances in Applied Probability.

[30]  Konstantinos Fokianos,et al.  Log-linear Poisson autoregression , 2011, J. Multivar. Anal..

[31]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[32]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[33]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[34]  Dag Tjøstheim,et al.  On weak dependence conditions for Poisson autoregressions , 2012 .

[35]  David Harris,et al.  Efficient probabilistic forecasts for counts , 2011 .

[36]  Jürgen Franke,et al.  Weak Dependence of Functional INGARCH Processes , 2010 .

[37]  Andréas Heinen,et al.  Multivariate autoregressive modeling of time series count data using copulas , 2007 .

[38]  Benjamin Kedem,et al.  Regression models for time series analysis , 2002 .

[39]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..

[40]  Bas J. M. Werker,et al.  Note on Integer-Valued Bilinear Time Series Models , 2007 .

[41]  P. Doukhan,et al.  Weak Dependence: With Examples and Applications , 2007 .

[42]  Bas J. M. Werker,et al.  Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models , 2007 .

[43]  D. Tjøstheim,et al.  Nonlinear Poisson autoregression , 2012 .

[44]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[45]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[46]  Benjamin Kedem,et al.  Partial Likelihood Inference For Time Series Following Generalized Linear Models , 2004 .

[47]  Alain Latour,et al.  Integer‐Valued GARCH Process , 2006 .

[48]  W. Li,et al.  Time series models based on generalized linear models: some further results. , 1994, Biometrics.

[49]  J. Zakoian,et al.  Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .

[50]  J. Dedecker,et al.  New dependence coefficients. Examples and applications to statistics , 2005 .

[51]  Anders Rahbek,et al.  ASYMPTOTIC INFERENCE FOR NONSTATIONARY GARCH , 2004, Econometric Theory.