Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya

[1]  P. Forterre,et al.  Expanded Dataset Reveals the Emergence and Evolution of DNA Gyrase in Archaea , 2022, Molecular biology and evolution.

[2]  M. Gillings,et al.  Discovery of integrons in Archaea: Platforms for cross-domain gene transfer , 2022, bioRxiv.

[3]  Fang Qin,et al.  Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group , 2022, The ISME Journal.

[4]  Connor T. Skennerton,et al.  Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea , 2021, bioRxiv.

[5]  E. Koonin,et al.  Expanded diversity of Asgard archaea and their relationships with eukaryotes , 2021, Nature.

[6]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[7]  H. Drost,et al.  Sensitive protein alignments at tree-of-life scale using DIAMOND , 2021, Nature Methods.

[8]  J. Barretina,et al.  Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways , 2021, Gut.

[9]  Ruixin Zhu,et al.  Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea. , 2020, Genome biology and evolution.

[10]  Cameron L.M. Gilchrist,et al.  clinker & clustermap.js: Automatic generation of gene cluster comparison figures , 2020, bioRxiv.

[11]  Č. Venclovas,et al.  Diversity and evolution of B-family DNA polymerases , 2020, Nucleic acids research.

[12]  H. Flint,et al.  Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities , 2020, mBio.

[13]  T. Embley,et al.  Phylogenomics provides robust support for a two-domains tree of life , 2019, Nature Ecology & Evolution.

[14]  Takashi Yamaguchi,et al.  Isolation of an archaeon at the prokaryote–eukaryote interface , 2019, Nature.

[15]  S. Gribaldo,et al.  An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy , 2019, Nature Microbiology.

[16]  Andrew D. Mathis,et al.  A Two-Enzyme Adaptive Unit within Bacterial Folate Metabolism. , 2019, Cell reports.

[17]  P. Herdewijn,et al.  Synthesis and Structure–Activity Relationship Studies of Benzo[b][1,4]oxazin‐3(4H)‐one Analogues as Inhibitors of Mycobacterial Thymidylate Synthase X , 2019, ChemMedChem.

[18]  H. Myllykallio,et al.  Unique Features and Anti-microbial Targeting of Folate- and Flavin-Dependent Methyltransferases Required for Accurate Maintenance of Genetic Information , 2018, Front. Microbiol..

[19]  Lukas Zimmermann,et al.  A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. , 2017, Journal of molecular biology.

[20]  P. Herdewijn,et al.  Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile , 2017, Biochemical pharmacology.

[21]  S. Albers,et al.  Mechanisms of gene flow in archaea , 2017, Nature Reviews Microbiology.

[22]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[23]  Thijs J. G. Ettema,et al.  Asgard archaea illuminate the origin of eukaryotic cellular complexity , 2017, Nature.

[24]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in protein science.

[25]  Yann Ponty,et al.  ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony , 2016, Bioinform..

[26]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[27]  Vincent Berry,et al.  SylvX: a viewer for phylogenetic tree reconciliations , 2016, Bioinform..

[28]  Liping Yu,et al.  An unprecedented mechanism of nucleotide methylation in organisms containing thyX , 2016, Science.

[29]  Thijs J. G. Ettema,et al.  Complex archaea that bridge the gap between prokaryotes and eukaryotes , 2015, Nature.

[30]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[31]  F. Rodríguez-Valera,et al.  Pangenome Evidence for Extensive Interdomain Horizontal Transfer Affecting Lineage Core and Shell Genes in Uncultured Planktonic Thaumarchaeota and Euryarchaeota , 2014, Genome biology and evolution.

[32]  Qiyun Zhu,et al.  HGTector: an automated method facilitating genome-wide discovery of putative horizontal gene transfers , 2014, BMC Genomics.

[33]  Eric J Alm,et al.  Horizontal gene transfer and the evolution of bacterial and archaeal population structure. , 2013, Trends in genetics : TIG.

[34]  Robert H. White,et al.  Comparative Genomics Guided Discovery of Two Missing Archaeal Enzyme Families Involved in the Biosynthesis of the Pterin Moiety of Tetrahydromethanopterin and Tetrahydrofolate , 2012, ACS chemical biology.

[35]  U. Gophna,et al.  An Evolutionary Analysis of Lateral Gene Transfer in Thymidylate Synthase Enzymes , 2010, Systematic biology.

[36]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[37]  Scott A. Lesley,et al.  An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX Gene , 2009, Nature.

[38]  H. Myllykallio,et al.  Flavin-dependent thymidylate synthase X limits chromosomal DNA replication , 2008, Proceedings of the National Academy of Sciences.

[39]  Y. Boum,et al.  Functional Analysis of the Mycobacterium tuberculosis FAD-Dependent Thymidylate Synthase, ThyX, Reveals New Amino Acid Residues Contributing to an Extended ThyX Motif , 2008, Journal of bacteriology.

[40]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[41]  H. Nijhout,et al.  Flavin-Dependent Thymidylate Synthase ThyX Activity: Implications for the Folate Cycle in Bacteria , 2007, Journal of bacteriology.

[42]  Arthur M. Lesk,et al.  Quantitative sequence-function relationships in proteins based on gene ontology , 2007, BMC Bioinformatics.

[43]  M. Graille,et al.  Catalytic Mechanism and Structure of Viral Flavin-dependent Thymidylate Synthase ThyX* , 2006, Journal of Biological Chemistry.

[44]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[45]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[46]  M. Noordewier,et al.  Genome Streamlining in a Cosmopolitan Oceanic Bacterium , 2005, Science.

[47]  J. Breznak,et al.  Folate Cross-Feeding Supports Symbiotic Homoacetogenic Spirochetes , 2005, Applied and Environmental Microbiology.

[48]  J. V. Van Etten,et al.  Functional Analysis of FAD-dependent Thymidylate Synthase ThyX from Paramecium bursaria Chlorella Virus-1* , 2004, Journal of Biological Chemistry.

[49]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[50]  Peter Kuhn,et al.  Mechanistic studies of a flavin-dependent thymidylate synthase. , 2004, Biochemistry.

[51]  H. Myllykallio,et al.  Functional evidence for active site location of tetrameric thymidylate synthase X at the interphase of three monomers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Myllykallio,et al.  Life without dihydrofolate reductase FolA. , 2003, Trends in microbiology.

[53]  W. Doolittle,et al.  Prokaryotic evolution in light of gene transfer. , 2002, Molecular biology and evolution.

[54]  M. Giladi,et al.  Genetic evidence for a novel thymidylate synthase in the halophilic archaeon Halobacterium salinarum and in Campylobacter jejuni. , 2002, FEMS microbiology letters.

[55]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[56]  Patrick Forterre,et al.  An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis , 2002, Science.

[57]  P. Bork,et al.  Quod erat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences , 2001, Genome Biology.

[58]  B. Maden Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. , 2000, The Biochemical journal.

[59]  R. White,et al.  dTMP biosynthesis in Archaea , 1996, Journal of bacteriology.

[60]  D. Santi,et al.  The catalytic mechanism and structure of thymidylate synthase. , 1995, Annual review of biochemistry.

[61]  H. Hogenkamp,et al.  Purification and partial characterization of a putative thymidylate synthase from Methanobacterium thermoautotrophicum. , 1994, European journal of biochemistry.

[62]  E. Stokstad,et al.  Transport and metabolism of folates by bacteria. , 1975, The Journal of biological chemistry.