Quantum codes from neural networks

We examine the usefulness of applying neural networks as a variational state ansatz for many-body quantum systems in the context of quantum information-processing tasks. In the neural network state ansatz, the complex amplitude function of a quantum state is computed by a neural network. The resulting multipartite entanglement structure captured by this ansatz has proven rich enough to describe the ground states and unitary dynamics of various physical systems of interest. In the present paper, we initiate the study of neural network states in quantum information-processing tasks. We demonstrate that neural network states are capable of efficiently representing quantum codes for quantum information transmission and quantum error correction, supplying further evidence for the usefulness of neural network states to describe multipartite entanglement. In particular, we show the following main results: a) Neural network states yield quantum codes with a high coherent information for two important quantum channels, the generalized amplitude damping channel and the dephrasure channel. These codes outperform all other known codes for these channels, and cannot be found using a direct parametrization of the quantum state. b) For the depolarizing channel, the neural network state ansatz reliably finds the best known codes given by repetition codes. c) Neural network states can be used to represent absolutely maximally entangled states, a special type of quantum error-correcting codes. In all three cases, the neural network state ansatz provides an efficient and versatile means as a variational parametrization of these highly entangled states.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  D. Leung,et al.  Quantum and private capacities of low-noise channels , 2017, 2017 IEEE Information Theory Workshop (ITW).

[3]  Seth Lloyd,et al.  Reverse coherent information. , 2008, Physical review letters.

[4]  Michael S. Gashler,et al.  Modeling time series data with deep Fourier neural networks , 2016, Neurocomputing.

[5]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[6]  J. Latorre,et al.  Holographic codes , 2015, 1502.06618.

[7]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[8]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[9]  U. Vazirani,et al.  A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians , 2015, Nature Physics.

[10]  Felix Huber,et al.  Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity , 2017, ArXiv.

[11]  W. Helwig,et al.  Absolutely Maximally Entangled Qudit Graph States , 2013, 1306.2879.

[12]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[13]  M. B. Hastings Entropy and entanglement in quantum ground states , 2007 .

[14]  V. Giovannetti,et al.  Information-capacity description of spin-chain correlations , 2004, quant-ph/0405110.

[15]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[16]  J. Latorre,et al.  Absolute maximal entanglement and quantum secret sharing , 2012, 1204.2289.

[17]  K. Życzkowski,et al.  Entanglement and quantum combinatorial designs , 2017, Physical Review A.

[18]  F. Verstraete,et al.  Matrix product states for critical spin chains: Finite-size versus finite-entanglement scaling , 2012, Physical Review B.

[19]  Cheng-Zhi Peng,et al.  Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal , 2017 .

[20]  V. Tikhomirov On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous Functions of a Smaller Number of Variables , 1991 .

[21]  J. Sopena,et al.  Neural networks with periodic and monotonic activation functions: a comparative study in classification problems , 1999 .

[22]  J. Latorre,et al.  Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices , 2015, 1506.08857.

[23]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[24]  G. Burkard,et al.  Decoherence in solid-state qubits , 2008, 0809.4716.

[25]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[26]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[27]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[28]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[29]  David Gosset,et al.  Correlation Length versus Gap in Frustration-Free Systems. , 2015, Physical review letters.

[30]  Stefano Pirandola,et al.  Conditional channel simulation , 2018, Annals of Physics.

[31]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[32]  A. Stefanov,et al.  Computing the entropy of a large matrix , 2012, 1209.2575.

[33]  Eric M. Rains Quantum Weight Enumerators , 1998, IEEE Trans. Inf. Theory.

[34]  K. Birgitta Whaley,et al.  Lower bounds on the nonzero capacity of Pauli channels , 2008 .

[35]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[36]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[37]  Raymond Laflamme,et al.  Quantum Analog of the MacWilliams Identities for Classical Coding Theory , 1997 .

[38]  O. Gühne,et al.  Absolutely Maximally Entangled States of Seven Qubits Do Not Exist. , 2016, Physical review letters.

[39]  H. Saito Solving the Bose–Hubbard Model with Machine Learning , 2017, 1707.09723.

[40]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[41]  C. Monroe,et al.  Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs , 2000 .

[42]  D. Leung,et al.  Dephrasure Channel and Superadditivity of Coherent Information. , 2018, Physical review letters.

[43]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[44]  A. J. Scott Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.

[45]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[46]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[47]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[48]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[49]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[50]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[51]  Guang-Can Guo,et al.  Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists , 2018, Physical Review A.

[52]  Jinguo Liu,et al.  Approximating quantum many-body wave functions using artificial neural networks , 2017, 1704.05148.

[53]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[54]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[55]  Matthias Troyer,et al.  Neural-network Quantum States , 2018 .

[56]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[57]  M. Wilde,et al.  Information-theoretic aspects of the generalized amplitude-damping channel , 2019, 1903.07747.

[58]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[59]  David Perez-Garcia,et al.  Continuum limits of matrix product states , 2018, Physical Review B.

[60]  Markus Grassl,et al.  Invariant perfect tensors , 2016, 1612.04504.

[61]  Volkher B. Scholz,et al.  Approximate degradable quantum channels , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[62]  W. Cui,et al.  Absolutely Maximally Entangled States: Existence and Applications , 2013, 1306.2536.

[63]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[64]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[65]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[66]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[67]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[68]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[69]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.