Comparison of Nearest Neighbor Methods for Estimating Basal Area and Stems per Hectare Using Aerial Auxiliary Variables

Simulations were used to compare variable-space nearest neighbor methods for imputing stems per ha and basal area per ha (ground measured) for complex stands (many species and sizes) of southeastern British Columbia, Canada. Species composition and other characteristics obtained for every stand by interpreting aerial photography were used as auxiliary variables. The simulations included three distance metrics (squared Euclidean distance, most similar neighbor, and absolute distance), three intensities of stands with full informa- tion (20%, 50%, and 80%), two sets of aerial variables (mixed versus moderately high correlations with ground variables), and three averaging methods (nearest neighbor, average of three nearest neighbors, and distance weighted average of three nearest neighbors weighted). Increasing the number of stands with full information to 50% from 20% resulted in increased accuracy, with no noticeable improvement with a further increase to 80%. Of the three distance metrics, the most similar neighbor measure gave good results in imputing stems per ha and basal area per ha, particularly when there was a mixture of correlations, high and moderate, between the auxiliary (aerial) variables, and the ground variables. No large gain was noted in using the average of three neighbors rather than a single neighbor. FOR .S CI. 51(2):109-119.

[1]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[2]  T. Kurczynski,et al.  Generalized Distance and Discrete Variables , 1970 .

[3]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[4]  A. A. Zumrawi,et al.  Regeneration imputation models for complex stands of southeastern British Columbia , 2004 .

[5]  Annika Kangas,et al.  Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution , 1998 .

[6]  P. Hardin Parametric and nearest-neighbor methods for hybrid classification: a comparison of pixel assignment accuracy , 1994 .

[7]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[8]  Erkki Tomppo,et al.  Stratification by ancillary data in multisource forest inventories employing k-nearest-neighbour estimation , 2002 .

[9]  Ronald E. McRoberts,et al.  Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique , 2002 .

[10]  I. A. Nalder,et al.  Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest , 1998 .

[11]  F. J. Pierce,et al.  Contemporary Statistical Models for the Plant and Soil Sciences , 2001 .

[12]  Annika Kangas,et al.  Application of nearest-neighbour regression for generalizing sample tree information , 1997 .

[13]  A. McBratney,et al.  Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging , 1995 .

[14]  Matti Maltamo,et al.  The K‐nearest‐neighbour method for estimating basal‐area diameter distribution , 1997 .

[15]  Hailemariam Temesgen,et al.  Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia , 2003 .

[16]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[17]  Andrew Luk,et al.  A Re-Examination of the Distance-Weighted k-Nearest Neighbor Classification Rule , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Sakari Tuominen,et al.  Combining remote sensing, data from earlier inventories, and geostatistical interpolation in multisource forest inventory , 2003 .

[19]  Andrew P. Robinson,et al.  Development and testing of regeneration imputation models for forests in Minnesota , 1997 .