The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations

Herschel-PACS measurements of the rotational R(0) and R(1) HD lines in the atmospheres of Uranus and Neptune are analyzed in order to derive a D/H ratio with improved precision for both planets. The derivation of the D/H ratio includes also previous measurements of the R(2) line by the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO). The available spectroscopic line information of the three rotational transitions is discussed and applied in the radiative transfer calculations. The best simultaneous fit of all three lines requires only a minor departure from the Spitzer temperature profile of Uranus and a departure limited to 2K from the Voyager temperature profile of Neptune (both around the tropopause). The resulting and remarkably similar D/H ratios for Uranus and Neptune are found to be (4.4$\pm$0.4)$\times10^{-5}$ and (4.1$\pm$0.4)$\times10^{-5}$ respectively. Although the deuterium enrichment in both atmospheres compared to the protosolar value is confirmed, it is found to be lower compared to previous analysis. Using the interior models of Podolak et al. (1995), Helled et al. (2011) and Nettelmann et al. (2013), and assuming that complete mixing of the atmosphere and interior occured during the planets history, we derive a D/H in protoplanetary ices between (5.75--7.0)$\times10^{-5}$ for Uranus and between (5.1--7.7)$\times10^{-5}$ for Neptune. Conversely, adopting a cometary D/H for the protoplanetary ices between (15-30)$\times10^{-5}$, we constrain the interior models of both planets to have an ice mass fraction of 14-32%, i.e. that the two planets are rock-dominated.

[1]  I. Pater,et al.  Constraining the origins of Neptune’s carbon monoxide abundance with CARMA millimeter-wave observations , 2012, 1301.1990.

[2]  R. Helled,et al.  WHAT DO WE REALLY KNOW ABOUT URANUS AND NEPTUNE? , 2012, 1208.5551.

[3]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[4]  G. Orton,et al.  The application of new methane line absorption data to Gemini-N/NIFS and KPNO/FTS observations of Uranus’ near-infrared spectrum , 2012 .

[5]  Miguel de Val-Borro,et al.  Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd) , 2012, 1207.7180.

[6]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[7]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[8]  J. Petit,et al.  ON THE FORMATION LOCATION OF URANUS AND NEPTUNE AS CONSTRAINED BY DYNAMICAL AND CHEMICAL MODELS OF COMETS , 2011, 1104.4977.

[9]  Ravit Helled,et al.  INTERIOR MODELS OF URANUS AND NEPTUNE , 2010, 1010.5546.

[10]  Miguel de Val-Borro,et al.  First results of Herschel-PACS observations of Neptune , 2010, 1006.0114.

[11]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[12]  T. Encrenaz,et al.  Neptune's atmospheric composition from AKARI infrared spectroscopy , 2010, 1003.5571.

[13]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[14]  Nicolas Thomas,et al.  Water and Related Chemistry in the Solar System. A Guaranteed Time Key Programme for Herschel , 2009 .

[15]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[16]  G. Orton,et al.  Revised ab initio models for H2–H2 collision-induced absorption at low temperatures , 2007 .

[17]  G. Orton,et al.  The abundance profile of CO in Neptune's atmosphere , 2007 .

[18]  T. Encrenaz,et al.  Compositional constraints on giant planet formation , 2006 .

[19]  E. Lellouch,et al.  A dual origin for Neptune's carbon monoxide? , 2005 .

[20]  D. Gautier,et al.  Formation and Composition of Planetesimals , 2005 .

[21]  J. Tennyson,et al.  Deuterated hydrogen chemistry: partition functions, equilibrium constants and transition intensities for the H+3 system , 2004, astro-ph/0406503.

[22]  T. Encrenaz,et al.  Element Abundances and Isotope Ratios in the Giant Planets and Titan , 2003 .

[23]  B. Butler,et al.  Seasonal change in the deep atmosphere of Uranus , 2002 .

[24]  T. Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001, astro-ph/0502068.

[25]  D. Gautier,et al.  A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets , 2001 .

[26]  T. Encrenaz,et al.  The deuterium abundance in Jupiter and Saturn from ISO-SWS observations , 2001 .

[27]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[28]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[29]  D. Gautier,et al.  Deuterium enrichment in giant planets , 1996 .

[30]  M. Marley,et al.  Comparative models of Uranus and Neptune , 1995 .

[31]  B. Fegley,et al.  The Origin of Carbon Monoxide in Neptune's Atmosphere , 1993 .

[32]  T. Owen,et al.  First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and the implications for atmospheric chemistry , 1993 .

[33]  William E. Blass,et al.  Thermal spectroscopy of Neptune: the stratospheric temperature, hydrocarbon abundances, and isotopic ratios , 1992 .

[34]  B. Bézard,et al.  Hydrocarbons in Neptune's stratosphere from Voyager infrared observations , 1991 .

[35]  P. Natale,et al.  Pure Rotational Spectrum of Hydrogen Deuteride by Far-Infrared Fourier Transform Spectroscopy , 1991 .

[36]  G. F. Lindal,et al.  The atmosphere of Neptune: Results of radio occultation measurements with the Voyager 2 spacecraft , 1990 .

[37]  T. Owen,et al.  Monodeuterated methane in the outer solar system. IV. Its detection and abundance on Neptune. , 1990, The Astrophysical journal.

[38]  Damon P. Simonelli,et al.  The interiors of Pluto and Charon: Structure, composition, and implications , 1989 .

[39]  T. Millar,et al.  Models of the gas-grain interaction. Deuterium chemistry. , 1989 .

[40]  K. Baines,et al.  D/H for Uranus and Neptune , 1989 .

[41]  K. Baines,et al.  The D/H ratio for Jupiter , 1989 .

[42]  P. Bodenheimer,et al.  THEORIES OF THE ORIGIN AND EVOLUTION OF THE GIANT PLANETS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[43]  K. Evenson,et al.  Frequency measurement of the J = 1-0 rotational transition of HD , 1988 .

[44]  J. Burns Origin and Evolution of Planetary and Satellite Atmospheres , 1988 .

[45]  Drakopoulos,et al.  Collisional interference in the foreign-gas-perturbed far-infrared rotational spectrum of HD. , 1987, Physical review. A, General physics.

[46]  Drakopoulos,et al.  Far-infrared rotational spectrum of HD: Line shape, dipole moment, and collisional interference. , 1987, Physical review. A, General physics.

[47]  Jacek Borysow,et al.  Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K , 1986 .

[48]  A. Borysow,et al.  Theoretical collision-induced rototranslational absorption spectra for the outer planets: H2-CH4 pairs , 1986 .

[49]  J. Borysow,et al.  Modeling of pressure-induced far-infrared absorption spectra Molecular hydrogen pairs. [in outer planets atmospheres , 1985 .

[50]  T. Owen,et al.  Monodeuterated Methane in the Outer Solar System. II. Its Detection on Uranus at 1.6 Microns , 1985 .

[51]  W. Hubbard,et al.  Theoretical predictions of deuterium abundances in the Jovian planets , 1980 .

[52]  L. Trafton,et al.  The DH ratio in the atmosphere of Uranus: Detection of the R5(1) line of HD , 1980 .

[53]  W. D. Watson Ion-Molecule Reactions, Molecule Formation, and Hydrogen-Isotope Exchange in Dense Interstellar Clouds , 1974 .

[54]  W. Traub,et al.  Observation of HD on Jupiter and the D/h Ratio , 1973 .