A Nonlinear Lagrangian Approach to Constrained Optimization Problems

In this paper we study nonlinear Lagrangian functions for constrained optimization problems which are, in general, nonlinear with respect to the objective function. We establish an equivalence between two types of zero duality gap properties, which are described using augmented Lagrangian dual functions and nonlinear Lagrangian dual functions, respectively. Furthermore, we show the existence of a path of optimal solutions generated by nonlinear Lagrangian problems and show its convergence toward the optimal set of the original problem. We analyze the convergence of several classes of nonlinear Lagrangian problems in terms of their first and second order necessary optimality conditions.

[1]  Erik J. Balder,et al.  An Extension of Duality-Stability Relations to Nonconvex Optimization Problems , 1977 .

[2]  Xiaoqi Yang,et al.  Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .

[3]  Xiaoqi Yang Second-order global optimality conditions for convex composite optimization , 1998, Math. Program..

[4]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[5]  Duan Li Zero duality gap for a class of nonconvex optimization problems , 1995 .

[6]  Xiaoqi Yang,et al.  Second-order conditions in c1, 1 optimization with applications , 1993 .

[7]  John L. Troutman Necessary Conditions for Optimality , 1996 .

[8]  J. Borwein,et al.  A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions , 1987 .

[9]  C. Goh,et al.  Nonlinear Lagrangian Theory for Nonconvex Optimization , 2001 .

[10]  X. Q. Yang,et al.  Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..

[11]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[12]  P. Loridan Necessary conditions for ε-optimality , 1982 .

[13]  Stephen A. Vavasis,et al.  Black-Box Complexity of Local Minimization , 1993, SIAM J. Optim..

[14]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[15]  X. Q. Yang,et al.  Nonlinear Lagrangian for Multiobjective Optimization and Applications to Duality and Exact Penalization , 2002, SIAM J. Optim..

[16]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[17]  Alfred Auslender,et al.  Penalty methods for computing points that satisfy second order necessary conditions , 1979, Math. Program..

[18]  A. Ben-Tal,et al.  Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems , 1982, Math. Program..

[19]  Roberto Cominetti,et al.  Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..

[20]  Xiaoqi Yang,et al.  An Exterior Point Method for Computing Points That Satisfy Second-Order Necessary Conditions for a C1,1 Optimization Problem , 1994 .

[21]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[22]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[23]  Christakis Charalambous,et al.  On conditions for optimality of the nonlinearl1 problem , 1979, Math. Program..

[24]  Peter R. Wolenski,et al.  Proximal Analysis and Minimization Principles , 1995 .

[25]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .