INPUT UNCERTAINTY QUANTIFICATION FOR QUANTILES

Input models that drive stochastic simulations are often estimated from real-world samples of data. This leads to uncertainty in the input models that propagates through to the simulation outputs. Input uncertainty typically refers to the variance of the output performance measure due to the estimated input models. Many methods exist for quantifying input uncertainty when the performance measure is the sample mean of the simulation outputs, however quantiles that are frequently used to evaluate simulation output risk cannot be incorporated into this framework. Here we adapt two input uncertainty quantification techniques for when the performance measure is a quantile of the simulation outputs rather than the sample mean. We implement the methods on two examples and show that both methods accurately estimate an analytical approximation of the true value of input uncertainty.

[1]  Bo Wang,et al.  METAMODEL-ASSISTED RISK ANALYSIS FOR STOCHASTIC SIMULATION WITH INPUT UNCERTAINTY , 2018, 2018 Winter Simulation Conference (WSC).

[2]  Michael C. Fu,et al.  Applications of generalized likelihood ratio method to distribution sensitivities and steady-state simulation , 2018, Discret. Event Dyn. Syst..

[3]  Enlu Zhou,et al.  Risk Quantification in Stochastic Simulation under Input Uncertainty , 2015, ACM Trans. Model. Comput. Simul..

[4]  Barry L. Nelson,et al.  Single-experiment input uncertainty , 2015, J. Simulation.

[5]  Marvin K. Nakayama,et al.  Constructing confidence intervals for a quantile using batching and sectioning when applying Latin hypercube sampling , 2014, Proceedings of the Winter Simulation Conference 2014.

[6]  Barry L. Nelson,et al.  Advanced tutorial: Input uncertainty quantification , 2014, Proceedings of the Winter Simulation Conference 2014.

[7]  Marvin K. Nakayama,et al.  Confidence Intervals for Quantiles Using Sectioning When Applying Variance-Reduction Techniques , 2014, TOMC.

[8]  Barry L. Nelson,et al.  Foundations and Methods of Stochastic Simulation: A First Course , 2013 .

[9]  Michael C. Fu,et al.  Conditional Monte Carlo Estimation of Quantile Sensitivities , 2009, Manag. Sci..

[10]  Warren Volk-Makarewicz,et al.  Quantile Sensitivity Estimation , 2009, NET-COOP.

[11]  L. Jeff Hong,et al.  Kernel estimation for quantile sensitivities , 2007, 2007 Winter Simulation Conference.

[12]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[13]  Stephen M. S. Lee,et al.  Variance estimation for sample quantiles using them out ofn bootstrap , 2005 .

[14]  R. Cheng,et al.  Two-point methods for assessing variability in simulation output , 1998 .

[15]  R. Cheng,et al.  Sensitivity of computer simulation experiments to errors in input data , 1997 .

[16]  J. Shao,et al.  A General Theory for Jackknife Variance Estimation , 1989 .

[17]  Thomas J. DiCiccio,et al.  On Smoothing and the Bootstrap , 1989 .

[18]  P. Hall,et al.  Exact convergence rate of bootstrap quantile variance estimator , 1988 .

[19]  L. Jeff Hong,et al.  Estimating Quantile Sensitivities , 2009, Oper. Res..

[20]  P. Frazier,et al.  Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation , 2016, 2016 Winter Simulation Conference (WSC).