Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium

Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was present to maintain energy production in the absence of glycerol, the increases in membrane potential and chemotactic response upon addition of glycerol were abolished. Methylation of a chemotaxis receptor was not required for positive glycerol chemotaxis in E. coli or S. typhimurium but is involved in the negative chemotaxis of E. coli to high concentrations of glycerol. We propose that positive chemotaxis to glycerol in E. coli and S. typhimurium is an example of energy taxis mediated via a signal transduction pathway that responds to changes in the cellular energy level.

[1]  J. Shioi,et al.  Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium , 1988, Journal of bacteriology.

[2]  J. S. Parkinson,et al.  Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions , 1982, Journal of bacteriology.

[3]  G L Hazelbauer,et al.  Chemotaxis Toward Sugars in Escherichia coli , 1973, Journal of bacteriology.

[4]  B. L. Taylor,et al.  Aerotaxis in Halobacterium salinarium is methylation-dependent. , 1995, Microbiology.

[5]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[6]  M. Manson,et al.  Reconstitution of maltose chemotaxis in Escherichia coli by addition of maltose-binding protein to calcium-treated cells of maltose regulon mutants , 1984, Journal of bacteriology.

[7]  D. Koshland,et al.  Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[8]  I. Zhulin,et al.  Behavioral responses of Escherichia coli to changes in redox potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  C. Kung,et al.  Osmotaxis in Escherichia coli. , 1988, Cold Spring Harbor symposia on quantitative biology.

[10]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[11]  K. Oosawa,et al.  Demethylation of methyl-accepting chemotaxis proteins in Escherichia coli induced by the repellents glycerol and ethylene glycol , 1984, Journal of bacteriology.

[12]  D. Koshland,et al.  Quantitation of the sensory response in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[13]  B. L. Taylor,et al.  CheA, CheW, and CheY are required for chemotaxis to oxygen and sugars of the phosphotransferase system in Escherichia coli , 1995, Journal of bacteriology.

[14]  J. Adler,et al.  Negative Chemotaxis in Escherichia coli , 1974, Journal of bacteriology.

[15]  H. Berg,et al.  Migration of bacteria in semisolid agar. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. L. Taylor,et al.  Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis , 1995, Journal of bacteriology.

[17]  Susan Budavari,et al.  The Merck index : an encyclopedia of chemicals, drugs, and biologicals , 1983 .

[18]  J. Shioi,et al.  Oxygen taxis and proton motive force in Salmonella typhimurium. , 1984, The Journal of biological chemistry.

[19]  J. S. Parkinson,et al.  Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B L Taylor,et al.  Role of proton motive force in sensory transduction in bacteria. , 1983, Annual review of microbiology.

[21]  J. Adler,et al.  Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[22]  I. Zhulin,et al.  Oxygen taxis and proton motive force in Azospirillum brasilense , 1996, Journal of bacteriology.

[23]  J. Shioi,et al.  Oxygen as attractant and repellent in bacterial chemotaxis , 1987, Journal of Bacteriology.

[24]  M. Simon,et al.  Signal transduction pathways involving protein phosphorylation in prokaryotes. , 1991, Annual review of biochemistry.

[25]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[26]  J. Adler,et al.  Methylation of a membrane protein involved in bacterial chemotaxis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Koshland,et al.  Role of Methionine in Bacterial Chemotaxis , 1974, Journal of bacteriology.

[28]  B. L. Taylor,et al.  Aerotaxis in Salmonella typhimurium: role of electron transport , 1981, Journal of bacteriology.

[29]  B. L. Taylor,et al.  Inversion of aerotactic response in Escherichia coli deficient in cheB protein methylesterase , 1986, Journal of bacteriology.

[30]  Y Imae,et al.  Glycerol and ethylene glycol: members of a new class of repellents of Escherichia coli chemotaxis , 1983, Journal of bacteriology.

[31]  H. Berg,et al.  A protonmotive force drives bacterial flagella. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[33]  M. Manson,et al.  Bacterial motility and chemotaxis. , 1992, Advances in microbial physiology.

[34]  D E Koshland,et al.  Membrane receptors for aspartate and serine in bacterial chemotaxis. , 1979, The Journal of biological chemistry.

[35]  H. Vogel,et al.  Acetylornithinase of Escherichia coli: partial purification and some properties. , 1956, The Journal of biological chemistry.

[36]  J. S. Parkinson Signal transduction schemes of bacteria , 1993, Cell.

[37]  J. Adler,et al.  Escherichia coli shows two types of behavioral responses to osmotic upshift , 1993, Journal of bacteriology.

[38]  D. Koshland,et al.  Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. , 1975, Journal of molecular biology.

[39]  D. Koshland,et al.  A protein methylesterase involved in bacterial sensing. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Michael J. Chamberlin,et al.  Motility and Chemotaxis , 1993 .

[41]  D. Koshland,et al.  Electron acceptor taxis and blue light effect on bacterial chemotaxis , 1979, Journal of bacteriology.

[42]  B. L. Taylor,et al.  Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. S. Parkinson,et al.  Requirement of the cheB function for sensory adaptation in Escherichia coli , 1983, Journal of bacteriology.

[44]  B. L. Taylor,et al.  Comparison of methods for specific depletion of ATP in Salmonella typhimurium , 1993, Applied and environmental microbiology.

[45]  Robert Mesibov,et al.  Chemotaxis Toward Amino Acids in Escherichia coli , 1972, Journal of bacteriology.