Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers

We perform a comprehensive first-principles study of the electronic properties of phosphorene nanoribbons, phosphorus nanotubes, multilayer phosphorene sheets, and heterobilayers of phosphorene and two-dimensional (2D) transition-metal dichalcogenide (TMDC) monolayer. The tensile strain and electric-field effects on electronic properties of low-dimensional phosphorene nanostructures are also investigated. Our calculations show that the bare zigzag phosphorene nanoribbons (z-PNRs) are metals regardless of the ribbon width, whereas the bare armchair phosphorene nanoribbons (a-PNRs) are semiconductors with indirect bandgaps and the bandgaps decrease with increasing ribbon width. We find that compressive (or tensile) strains can reduce (or enlarge) the bandgap of the bare a-PNRs while an in-plane electric field can significantly reduce the bandgap of the bare a-PNRs, leading to the semiconductor-to-metal transition beyond certain electric field. For edge-passivated PNR by hydrogen, z-PNRs become semiconductor...

[1]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[2]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[3]  Xiaojun Wu,et al.  Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain , 2014, 1403.3172.

[4]  Xiaojun Wu,et al.  van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. , 2014, Nanoscale.

[5]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[6]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[7]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[8]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[9]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[10]  X. Kong,et al.  Few-layer black phosphorus: emerging direct band gap semiconductor with high carrier mobility , 2014 .

[11]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[12]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[13]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[14]  W. Mei,et al.  MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. , 2013, Nanoscale.

[15]  N. Lu,et al.  van der Waals trilayers and superlattices : modi fi cation of electronic structures of MoS 2 by intercalation † , 2014 .

[16]  Jinlong Yang,et al.  Unusual Metallic Microporous Boron Nitride Networks , 2013 .

[17]  S. Lau,et al.  Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. , 2013, ACS nano.

[18]  Wanlin Guo,et al.  Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets. , 2013, Nanoscale.

[19]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[20]  T. Frauenheim,et al.  Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by Interfacial Strain and Spontaneous Polarization. , 2013, The journal of physical chemistry letters.

[21]  B. Radisavljevic,et al.  Reply to 'Measurement of mobility in dual-gated MoS₂ transistors'. , 2013, Nature nanotechnology.

[22]  M. Fuhrer,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[23]  Xin Sun,et al.  Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. , 2012, ACS nano.

[24]  Linze Li,et al.  Tuning Electronic Structure of Bilayer MoS2 by Vertical Electric Field: A First-Principles Investigation , 2012 .

[25]  G. Vaitheeswaran,et al.  Effect of van der Waals interactions on the structural and elastic properties of black phosphorus , 2012, 1211.3512.

[26]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[27]  Jinlong Yang,et al.  Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study , 2012 .

[28]  A. Singh,et al.  Semiconductor-metal transition in semiconducting bilayer sheets of transition metal dichalcogenides , 2012, 1203.6820.

[29]  Fengmin Wu,et al.  Modulating the bandgaps of graphdiyne nanoribbons by transverse electric fields , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Yingtao Zhu,et al.  Evidence of the existence of magnetism in pristine VX₂ monolayers (X = S, Se) and their strain-induced tunable magnetic properties. , 2012, ACS nano.

[31]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[32]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[33]  C. Zhang,et al.  Strain Induced Band Dispersion Engineering in Si Nanosheets , 2011 .

[34]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[35]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Jinlong Yang,et al.  Electronic Structure Engineering via On-Plane Chemical Functionalization: A Comparison Study on Two-Dimensional Polysilane and Graphane , 2009 .

[37]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[38]  Wanlin Guo,et al.  Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations , 2008, 1101.3118.

[39]  A. Lu,et al.  Stress-induced band gap tuning in ⟨112⟩ silicon nanowires , 2007 .

[40]  X. Zeng,et al.  Single-walled MoTe(2) nanotubes. , 2007, Nano letters.

[41]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[42]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[43]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[44]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[45]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[46]  G. Seifert,et al.  Theoretical prediction of phosphorus nanotubes , 2000 .

[47]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[52]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[53]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[54]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[55]  Y. Maruyama,et al.  Synthesis and some properties of black phosphorus single crystals , 1981 .

[56]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[57]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[58]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[59]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .