Parameter estimation from frequency response measurements

The identification of power apparatus parameters to be specified in transient models from frequency response tests is a well established practice. There has been, in addition, a significant effort in the development of fitting procedures that could derive the parameters from frequency response curves. This paper summarizes the present status of electrical parameter determination for synchronous machines and transformers from frequency response measurements. The document discusses power apparatus models, test setups, and fitting procedures.

[1]  A. Keyhani,et al.  The Effects of Noise on Frequency-Domain Parameter Estimation of Synchronous Machine Models , 1989, IEEE Power Engineering Review.

[2]  A. S. Morched,et al.  A high frequency transformer model for the EMTP , 1993 .

[3]  Rajeev Thottappillil,et al.  Transfer of lightning transients through distribution transformer circuits , 2002 .

[4]  B. Gustavsen Fast Passivity Enforcement for Pole-Residue Models by Perturbation of Residue Matrix Eigenvalues , 2008, IEEE Transactions on Power Delivery.

[5]  P. Kundur,et al.  Validation of Turbogenerator Stability Models by Comparisons with Power System Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[6]  J. Hurley,et al.  Standstill Frequency Response Modeling and Evaluation by Field Tests on a 645 MVA Turbine Generator , 1981, IEEE Transactions on Power Apparatus and Systems.

[7]  A. Keyhani,et al.  Maximum Likelihood Estimation of Generator Stability Constants Using SSFR Test Data , 1991, IEEE Power Engineering Review.

[8]  Ieee Standards Board IEEE guide for synchronous generator modeling practices in stability analyses , 1991 .

[9]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[10]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[11]  Bjorn Gustavsen Frequency-dependent modeling of power transformers with ungrounded windings , 2004 .

[12]  Gordon R. Slemon,et al.  On equivalent circuit modeling for synchronous machines , 1999 .

[13]  I. Kamwa,et al.  Experience with standstill frequency response (SSFR) testing and analysis of salient pole synchronous machines , 1999 .

[14]  Bjorn Gustavsen Wide band modeling of power transformers , 2004 .

[15]  J. Balda,et al.  Measurement of Synchronous Machine Parameters by a Modified Frequency Response Method - Part II: Measured Results , 1987, IEEE Transactions on Energy Conversion.

[16]  P. G. Blanken,et al.  A lumped winding model for use in transformer models for circuit simulation , 2001 .

[17]  M. J. Gibbard,et al.  Identification of synchronous machine parameters from standstill tests using recursive estimation with the bilinear operator , 1992 .

[18]  B. Gustavsen,et al.  Improving the pole relocating properties of vector fitting , 2006, 2006 IEEE Power Engineering Society General Meeting.

[19]  Lu Fangcheng,et al.  A High-Frequency Circuit Model of a Potential Transformer for the Very Fast Transient Simulation in GIS , 2008, IEEE Transactions on Power Delivery.

[20]  R. E. James,et al.  A Z-transform model of transformers for the study of electromagnetic transients in power systems , 1990 .

[21]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part I: Theory and Techniques , 1978, IEEE Transactions on Power Apparatus and Systems.

[22]  Ali Keyhani,et al.  Identification of high-order synchronous generator models from SSFR test data , 1994 .

[23]  Stefano Grivet-Talocia,et al.  Passivity enforcement via perturbation of Hamiltonian matrices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  P. Lataire,et al.  Influence of saturation on estimated synchronous machine parameters in standstill frequency response tests , 2000 .

[25]  Jean Mahseredjian,et al.  Generic and automated simulation modeling based on measurements , 2007 .

[26]  A. S. Morched,et al.  Multi-port frequency dependent network equivalents for the EMTP , 1993 .

[27]  S. Henschel,et al.  Noniterative synchronous machine parameter identification from frequency response tests , 1999 .

[28]  J. C. Balda,et al.  Measurement of Synchronous Machine Parameters by a Modified Frequency Response Method???Part I: Theory , 1987, IEEE Power Engineering Review.

[29]  P. Viarouge,et al.  On equivalent circuit structures for empirical modeling of turbine-generators , 1994 .

[30]  T. Dhaene,et al.  Orthonormal Vector Fitting: A Robust Macromodeling Tool for Rational Approximation of Frequency Domain Responses , 2007, IEEE Transactions on Advanced Packaging.

[31]  Adam Semlyen,et al.  Two-layer network equivalent for electromagnetic transients , 2003 .

[32]  R G Harley,et al.  Estimating Synchronous Machine Electrical Parameters from Frequency Response Tests , 1987, IEEE Transactions on Energy Conversion.

[33]  Ali Keyhani,et al.  Maximum likelihood estimation of generator stability constants using SSER test data , 1991 .

[34]  G. E. Dawson,et al.  Standstill frequency response testing and modeling of salient-pole synchronous machines , 1998 .

[35]  I. M. Canay,et al.  Determination of the model parameters of machines from the reactance operators x/sub d/(p), x/sub q/(p) (evaluation of standstill frequency response test) , 1993 .

[36]  Ed.C. Bortoni,et al.  A standstill frequency response method for large salient pole synchronous machines , 2004, IEEE Transactions on Energy Conversion.

[37]  A. M. El-Serafi,et al.  A 'three transfer functions' approach for the standstill frequency response test of synchronous machines , 1990 .

[38]  T. Dhaene,et al.  Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method , 2008, IEEE Microwave and Wireless Components Letters.

[39]  K. Feser,et al.  Transfer Function Method to Diagnose Axial Displacement and Radial Deformation of Transformer Winding , 2002, IEEE Power Engineering Review.

[40]  R. M. Saunders Standstill frequency-response methods and salient-pole synchronous machines , 1999 .

[41]  B. Gustavsen,et al.  Enforcing Passivity for Admittance Matrices Approximated by Rational Functions , 2001, IEEE Power Engineering Review.

[42]  T. Noda,et al.  Identification of a multiphase network equivalent for electromagnetic transient calculations using partitioned frequency response , 2005, IEEE Transactions on Power Delivery.

[43]  J. A. Mallick,et al.  Modeling of Solid Rotor Turbogenerators Part II: Example of Model Derivation and Use in Digital Simulation , 1978, IEEE Transactions on Power Apparatus and Systems.

[44]  B. Adkins,et al.  The Application of the Frequency-Response Method to Electrical Machines , 1956 .

[45]  A. Walton A systematic method for the determination of the parameters of synchronous machines from the results of frequency response tests , 2000 .

[46]  P.L. Dandeno,et al.  Development of Detailed Turbogenerator Equivalent Circuits from Standstill Frequency Response Measurements , 1981, IEEE Transactions on Power Apparatus and Systems.

[47]  B. Gustavsen,et al.  A Half-Size Singularity Test Matrix for Fast and Reliable Passivity Assessment of Rational Models , 2009 .

[48]  M.E. Coultes,et al.  Synchronous Machine Models by Standstill Frequency Response Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[49]  N. Abeywickrama,et al.  High-Frequency Modeling of Power Transformers for Use in Frequency Response Analysis (FRA) , 2008, IEEE Transactions on Power Delivery.

[50]  B. Gustavsen,et al.  Modal Vector Fitting: A Tool For Generating Rational Models of High Accuracy With Arbitrary Terminal Conditions , 2008, IEEE Transactions on Advanced Packaging.

[51]  Leon O. Chua,et al.  On the passivity criterion for ltiN-ports , 1982 .

[52]  A. Keyhani,et al.  Maximum Likelihood Estimation of Solid-Rotor Synchronous Machine Parameters from SSFR Test Data , 1989, IEEE Power Engineering Review.

[53]  P. de Arizon A model for the synchronous machine using frequency response measurements , 1995 .

[54]  Robert Shorten,et al.  A Note on Spectral Conditions for Positive Realness of Transfer Function Matrices , 2008, IEEE Transactions on Automatic Control.

[55]  Paul M. Anderson,et al.  Subsynchronous resonance in power systems , 1989 .

[56]  F. de Leon,et al.  Complete transformer model for electromagnetic transients , 1994 .

[57]  K. Reichert,et al.  Modelling and identification of synchronous machines, a new approach with an extended frequency range , 1993 .

[58]  Hans Kristian Hoidalen,et al.  High frequency FEM-based power transformer modeling: Investigation of internal stresses due to network-initiated overvoltages , 2007 .

[59]  L. N. Hannett,et al.  Determination of synchronous machine stator and field leakage inductances from standstill frequency response tests , 1988 .