The Changing Face of the Extrasolar Giant Planet HD 209458b

High-resolution atmospheric flow simulations of the tidally locked extrasolar giant planet HD 209458b show large-scale spatio-temporal variability. This is in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The planet's global circulation is characterized by a polar vortex in motion around each pole and a banded structure corresponding to approximately three broad zonal (east-west) jets. For very strong jets, the circulation-induced temperature difference between moving hot and cold regions can reach up to ~1000 K, suggesting that atmospheric variability could be observed in the planet's spectral and photometric signatures.

[1]  G. Schubert,et al.  Banded Surface Flow Maintained by Convection in a Model of the Rapidly Rotating Giant Planets , 1993, Science.

[2]  Zucker,et al.  The Spectroscopic Orbit of the Planetary Companion Transiting HD 209458. , 2000, The Astrophysical journal.

[3]  S. Orszag Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation , 1970 .

[4]  Steven Soter,et al.  Q in the solar system , 1966 .

[5]  S. Seager,et al.  PHOTOMETRIC LIGHT CURVES AND POLARIZATION OF CLOSE-IN EXTRASOLAR GIANT PLANETS , 2000 .

[6]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[7]  Marley,et al.  On the Radii of Close-in Giant Planets , 2000, The Astrophysical journal.

[8]  A. Boss Evolution of the Solar Nebula. III. Protoplanetary Disks Undergoing Mass Accretion , 1996 .

[9]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[10]  A. Ingersoll Atmospheric Dynamics of the Outer Planets , 1990, Science.

[11]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[12]  M. Salby Deep circulations under simple classes of stratification , 1989 .

[13]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[14]  L. Polvani,et al.  The Morphogenesis of Bands and Zonal Winds in the Atmospheres on the Giant Outer Planets , 1996, Science.

[15]  S. Seager,et al.  Extrasolar Giant Planets under Strong Stellar Irradiation , 1998 .

[16]  L. Polvani,et al.  The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere , 1996 .

[17]  Gareth P. Williams Planetary Circulations: 1. Barotropic Representation of Jovian and Terrestrial Turbulence , 1978 .

[18]  Hansen,et al.  Migrating planets , 1998, Science.

[19]  T. Guillot,et al.  Giant Planets at Small Orbital Distances , 1995, astro-ph/9511109.

[20]  M. Juckes,et al.  A high-resolution one-layer model of breaking planetary waves in the stratosphere , 1987, Nature.

[21]  P. Rhines Waves and turbulence on a beta-plane , 1975, Journal of Fluid Mechanics.

[22]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[23]  M. Marley,et al.  From Giant Planets to Cool Stars , 1999 .

[24]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[25]  J. Holton An introduction to dynamic meteorology , 2004 .

[26]  A. A. Chaikin,et al.  In: The new Solar System , 1981 .

[27]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.