A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

[1]  K. Vezzù,et al.  Single-Ion-Conducting Nanocomposite Polymer Electrolytes for Lithium Batteries Based on Lithiated-Fluorinated-Iron Oxide and Poly(ethylene glycol) 400 , 2015 .

[2]  Kun Fu,et al.  A Thermally Conductive Separator for Stable Li Metal Anodes. , 2015, Nano letters.

[3]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[4]  R. Dedryvère,et al.  Role of propane sultone as an additive to improve the performance of a lithium-rich cathode material at a high potential , 2015 .

[5]  S. Choudhury,et al.  A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte , 2015 .

[6]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[7]  Z. Wen,et al.  Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode , 2015 .

[8]  Hong‐Jie Peng,et al.  Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. , 2014, Small.

[9]  Hong‐Jie Peng,et al.  Lithium‐Sulfur Batteries: Dendrite‐Free Nanostructured Anode: Entrapment of Lithium in a 3D Fibrous Matrix for Ultra‐Stable Lithium–Sulfur Batteries (Small 21/2014) , 2014 .

[10]  Bing Sun,et al.  Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety , 2014, Scientific Reports.

[11]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[12]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[13]  J. Basu,et al.  Confinement enhances dispersion in nanoparticle–polymer blend films , 2014, Nature Communications.

[14]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[15]  J. Singh,et al.  Polymer directed aggregation and dispersion of anisotropic nanoparticles. , 2014, Soft matter.

[16]  Cheol‐Min Park,et al.  Metallic Anodes for Next Generation Secondary Batteries , 2014 .

[17]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[18]  Zhengyuan Tu,et al.  Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. , 2014, Angewandte Chemie.

[19]  A. Manthiram,et al.  Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries , 2013 .

[20]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[21]  L. Archer,et al.  High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites , 2013 .

[22]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[23]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[24]  L. Archer,et al.  Tethered nanoparticle-polymer composites: phase stability and curvature. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[25]  Shejun Hu,et al.  Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries , 2012 .

[26]  L. Archer,et al.  Ionic Liquid-Tethered Nanoparticle Suspensions: A Novel Class of Ionogels , 2012 .

[27]  P. Ajayan,et al.  High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. , 2012, Nano letters.

[28]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[29]  Tao Zhang,et al.  Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li , 2011 .

[30]  L. Archer,et al.  Nanoporous hybrid electrolytes , 2011 .

[31]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[32]  N. Imanishi,et al.  Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .

[33]  H. Peterlik,et al.  Anion metathesis in ionic silica nanoparticle networks , 2010 .

[34]  D. Bedrov,et al.  Dispersing nanoparticles in a polymer matrix: are long, dense polymer tethers really necessary? , 2009, Langmuir : the ACS journal of surfaces and colloids.

[35]  H. Peterlik,et al.  Nanoparticles/Ionic Linkers of Different Lengths: Short-Range Order Evidenced by Small-Angle X-ray Scattering , 2009 .

[36]  M. Armand,et al.  Building better batteries , 2008, Nature.

[37]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[38]  R. Krishnamoorti Strategies for Dispersing Nanoparticles in Polymers , 2007 .

[39]  Anna C. Balazs,et al.  Nanoparticle Polymer Composites: Where Two Small Worlds Meet , 2006, Science.

[40]  B. Scrosati,et al.  Advanced, lithium batteries based on high-performance composite polymer electrolytes , 2006 .

[41]  J. Tarascon,et al.  Evaluation of GPE performances in lithium metal battery technology by means of simple polarization tests , 2006 .

[42]  G. Lindbergh,et al.  On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes , 2003 .

[43]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[44]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[45]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[46]  M. Rosso,et al.  Onset of dendritic growth in lithium/polymer cells , 2001 .

[47]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[48]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[49]  J. Fuller,et al.  Ionic Liquid‐Polymer Gel Electrolytes , 1997 .

[50]  Alain Guyot,et al.  Polymer electrolytes , 1985, Polymer Bulletin.

[51]  Zhengyuan Tu,et al.  Nanoporous Polymer‐Ceramic Composite Electrolytes for Lithium Metal Batteries , 2014 .

[52]  L. Archer,et al.  Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions , 2014 .

[53]  N. Balsara,et al.  Lithium Metal Stability in Batteries with Block Copolymer Electrolytes , 2013 .

[54]  Robert O. Ritchie,et al.  Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries , 2013 .

[55]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .

[56]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .