Gas adsorption on MoS2 monolayer from first-principles calculations

Abstract First-principles calculations within density functional theory have been carried out to investigate the adsorption of various gas molecules including CO, CO2, NH3, NO, NO2, CH4, H2O, N2, O2 and SO2 on MoS2 monolayer in order to fully exploit gas sensing capabilities of MoS2. By including van der Waals interactions between gas molecules and MoS2, we find that only NO and NO2 can bind strongly to MoS2 sheet compared to other gas molecules, in line with experimental observations. The charge transfer and variation of electronic structures are discussed in view of the density of states and molecular orbitals of gas molecules.

[1]  Jianmin Yuan,et al.  Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study , 2009 .

[2]  Changgu Lee,et al.  Frictional Characteristics of Atomically Thin Sheets , 2010, Science.

[3]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[6]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[7]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Sumpter,et al.  Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. , 2011, The Journal of chemical physics.

[9]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[10]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[11]  F. M. Peeters,et al.  Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study , 2007, 0710.1757.

[12]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[13]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[14]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[15]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[16]  J. Carrasco,et al.  To wet or not to wet? Dispersion forces tip the balance for water ice on metals. , 2010, Physical review letters.

[17]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[18]  S. Ciraci,et al.  Functionalization of Single-Layer MoS2 Honeycomb Structures , 2010, 1009.5527.

[19]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[20]  J. Nørskov,et al.  Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2). , 2009, The Journal of chemical physics.

[21]  V. Meunier,et al.  Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects , 2012 .

[22]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[23]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[24]  S. Morrison,et al.  High activity catalyst from exfoliated MoS2 , 1987 .

[25]  W. Liu,et al.  Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding , 2012, 1209.4345.

[26]  Donald J. Siegel,et al.  Comparing van der Waals Density Functionals for CO2 Adsorption in Metal Organic Frameworks , 2012 .

[27]  L. Schultz,et al.  Metamagnetic effects in epitaxial BaFe1.8Cr0.2As2 thin films , 2012 .

[28]  K. Novoselov,et al.  Molecular doping of graphene. , 2007, Nano letters.

[29]  Stefan Meister,et al.  Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. , 2010, Nano letters.

[30]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[31]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[32]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  D. Hennig,et al.  Collective transport of coupled particles , 2012 .

[34]  M. E. Casida,et al.  Comparison of local‐density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities , 1993 .

[35]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[36]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[37]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[38]  E. D. Crozier,et al.  Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension , 2002 .

[39]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[42]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[43]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[44]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[45]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.