Modelling sequential events for risk, safety and maintenance assessments

[1]  S. Karlin,et al.  The differential equations of birth-and-death processes, and the Stieltjes moment problem , 1957 .

[2]  H. Vincent Poor,et al.  Detection of Stochastic Processes , 1998, IEEE Trans. Inf. Theory.

[3]  Pauline Coolen-Schrijner,et al.  QUASI-STATIONARY DISTRIBUTIONS FOR BIRTH-DEATH PROCESSES WITH KILLING , 2006 .

[4]  T. Rydén An EM algorithm for estimation in Markov-modulated Poisson processes , 1996 .

[5]  A. M. Aguilera,et al.  On the characteristic functional of a doubly stochastic poisson process : Application to a narrow-band process , 2006 .

[6]  Alexander I. Zeifman,et al.  Birth-death processes with killing , 2004 .

[7]  Yanyan Zheng,et al.  A Composite Stochastic Process Model for Software Reliability , 2008, 2008 International Conference on Computer Science and Software Engineering.

[8]  Hyun Suk Park Analytical binomial lookback options with double-exponential jumps ☆ , 2009 .

[9]  M. Taqqu,et al.  Central limit theorems for double Poisson integrals , 2008, 0810.4432.

[10]  Richard D Wilkinson,et al.  Estimating primate divergence times by using conditioned birth-and-death processes. , 2009, Theoretical population biology.

[11]  Edward Shwedyk,et al.  A generalized two-threshold detection procedure , 1988, IEEE Trans. Inf. Theory.

[12]  Stochastic Processes in Credit Risk Modelling , 2005 .

[13]  René Schott,et al.  Approximate decomposition of some modulated-Poisson Voronoi tessellations , 2003, Advances in Applied Probability.

[14]  António Pacheco,et al.  Multiscale Fitting Procedure Using Markov Modulated Poisson Processes , 2003, Telecommun. Syst..

[15]  C. Onof,et al.  A Markov modulated Poisson process model for rainfall increments. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[16]  Eugene V. Koonin,et al.  Biological applications of the theory of birth-and-death processes , 2005, Briefings Bioinform..