Estimation of low rank density matrices: bounds in Schatten norms and other distances

Let ${\mathcal S}_m$ be the set of all $m\times m$ density matrices (Hermitian positively semi-definite matrices of unit trace). Consider a problem of estimation of an unknown density matrix $\rho\in {\mathcal S}_m$ based on outcomes of $n$ measurements of observables $X_1,\dots, X_n\in {\mathbb H}_m$ (${\mathbb H}_m$ being the space of $m\times m$ Hermitian matrices) for a quantum system identically prepared $n$ times in state $\rho.$ Outcomes $Y_1,\dots, Y_n$ of such measurements could be described by a trace regression model in which ${\mathbb E}_{\rho}(Y_j|X_j)={\rm tr}(\rho X_j), j=1,\dots, n.$ The design variables $X_1,\dots, X_n$ are often sampled at random from the uniform distribution in an orthonormal basis $\{E_1,\dots, E_{m^2}\}$ of ${\mathbb H}_m$ (such as Pauli basis). The goal is to estimate the unknown density matrix $\rho$ based on the data $(X_1,Y_1), \dots, (X_n,Y_n).$ Let $$ \hat Z:=\frac{m^2}{n}\sum_{j=1}^n Y_j X_j $$ and let $\check \rho$ be the projection of $\hat Z$ onto the convex set ${\mathcal S}_m$ of density matrices. It is shown that for estimator $\check \rho$ the minimax lower bounds in classes of low rank density matrices (established earlier) are attained up logarithmic factors for all Schatten $p$-norm distances, $p\in [1,\infty]$ and for Bures version of quantum Hellinger distance. Moreover, for a slightly modified version of estimator $\check \rho$ the same property holds also for quantum relative entropy (Kullback-Leibler) distance between density matrices.

[1]  Gene H. Golub,et al.  Matrix computations , 1983 .

[2]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[3]  C. Michelot A finite algorithm for finding the projection of a point onto the canonical simplex of ∝n , 1986 .

[4]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy -- II , 2005, 1105.2656.

[5]  Yoram Singer,et al.  Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Hartmut Klauck,et al.  Interaction in Quantum Communication , 2006, IEEE Transactions on Information Theory.

[8]  A. Fiacco A Finite Algorithm for Finding the Projection of a Point onto the Canonical Simplex of R " , 2009 .

[9]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[10]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[11]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[12]  V. Koltchinskii Von Neumann Entropy Penalization and Low Rank Matrix Estimation , 2010, 1009.2439.

[13]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[14]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[15]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[16]  Karim Lounici Optimal spectral norm rates for noisy low-rank matrix completion , 2011, 1110.5346.

[17]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[18]  Yi-Kai Liu,et al.  Universal low-rank matrix recovery from Pauli measurements , 2011, NIPS.

[19]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[20]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[21]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[22]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[23]  Vladimir Koltchinskii Sharp Oracle Inequalities in Low Rank Estimation , 2013, Empirical Inference.

[24]  Pierre Alquier,et al.  Rank penalized estimation of a quantum system , 2012, 1206.1711.

[25]  V. Koltchinskii A remark on low rank matrix recovery and noncommutative Bernstein type inequalities , 2013 .

[26]  Yihong Wu,et al.  Volume ratio, sparsity, and minimaxity under unitarily invariant norms , 2013, 2013 IEEE International Symposium on Information Theory.

[27]  O. Klopp Noisy low-rank matrix completion with general sampling distribution , 2012, 1203.0108.

[28]  Dong Xia,et al.  Optimal estimation of low rank density matrices , 2015, J. Mach. Learn. Res..