ASYMPTOTIC SOLUTIONS FOR LARGE-TIME OF HAMILTON-JACOBI EQUATIONS IN EUCLIDEAN $n$ SPACE(Viscosity Solution Theory of Differential Equations and its Developments)
暂无分享,去创建一个
[1] J. Roquejoffre,et al. Remarks on the long time behaviour of the solutions of hamilton-jacobi equations , 1999 .
[2] P. Lions,et al. Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited , 1987 .
[3] Hiroyoshi Mitake. Asymptotic Solutions of Hamilton-Jacobi Equations with State Constraints , 2007 .
[4] E. Barron,et al. OPTIMAL CONTROL AND SEMICONTINUOUS VISCOSITY SOLUTIONS , 1991 .
[5] P. Lions. Generalized Solutions of Hamilton-Jacobi Equations , 1982 .
[6] H. Ishii. A simple, direct proof of uniqueness for solutions of the hamilton-jacobi equations of eikonal type , 1987 .
[7] Hitoshi Ishii,et al. Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space , 2006 .
[8] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[9] Guy Barles,et al. On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations , 2000, SIAM J. Math. Anal..
[10] Guy Barles. Asymptotic behavior of viscosity solutions of first-order Hamilton Jacobi equations , 1985 .
[11] Guy Barles,et al. Space-Time Periodic Solutions and Long-Time Behavior of Solutions to Quasi-linear Parabolic Equations , 2001, SIAM J. Math. Anal..
[12] A. Fathi,et al. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , 1997 .
[13] Antonio Siconolfi,et al. PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians , 2005 .
[14] J. Aubin,et al. Differential inclusions set-valued maps and viability theory , 1984 .
[15] H. Ishii,et al. Asymptotic Solutions of Hamilton–Jacobi Equations with Semi-Periodic Hamiltonians , 2008 .
[16] Guy Barles,et al. Ergodic Type Problems and Large Time Behaviour of Unbounded Solutions of Hamilton–Jacobi Equations , 2006, math/0612704.
[17] 石井 仁司. Asymptotic solutions for large-time of Hamilton-Jacobi equations in Euclidean n space (微分方程式の粘性解理論とその発展--RIMS研究集会報告集) , 2007 .
[18] H. Ishii,et al. Asymptotic Solutions of Viscous Hamilton–Jacobi Equations with Ornstein–Uhlenbeck Operator , 2006 .
[19] H. Ishii. Comparison results for hamilton-jacobi equations without grwoth condition on solutions from above , 1997 .
[20] J. Ball. GENERALIZED SOLUTIONS OF HAMILTON-JACOBI EQUATIONS (Research Notes in Mathematics, 69) , 1983 .
[21] E. Barron,et al. Semicontinuous Viscosity Solutions For Hamilton–Jacobi Equations With Convex Hamiltonians , 1990 .
[22] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[23] M. Bardi,et al. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .
[24] Andrea Davini,et al. A Generalized Dynamical Approach to the Large Time Behavior of Solutions of Hamilton-Jacobi Equations , 2006, SIAM J. Math. Anal..
[25] L. Evans,et al. A survey of partial differential equations methods in weak KAM theory , 2004 .
[26] Albert Fathi,et al. Weak KAM Theorem in Lagrangian Dynamics , 2001 .
[27] Hitoshi Ishii,et al. Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians , 2007 .
[28] Olivier Alvarez,et al. Bounded-from-below viscosity solutions of Hamilton-Jacobi equations , 1997, Differential and Integral Equations.
[29] Antonio Siconolfi,et al. Existence of C1 critical subsolutions of the Hamilton-Jacobi equation , 2004 .
[30] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[31] H. Ishii. A generalization of a theorem of Barron and Jensen and a comparison theorem for lower semicontinuous viscosity solutions , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[32] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[33] S. Zagatti. On viscosity solutions of Hamilton-Jacobi equations , 2008 .
[34] Jean-Michel Roquejoffre,et al. Convergence to steady states or periodic solutions in a class of Hamilton–Jacobi equations , 2001 .
[35] L. Evans. Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[36] A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik , 1998 .