A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field

[1]  J. Aurnou,et al.  Geomagnetic polar minima do not arise from steady meridional circulation , 2018, Proceedings of the National Academy of Sciences.

[2]  G. Glatzmaier Computer simulations of Jupiter’s deep internal dynamics help interpret what Juno sees , 2018, Proceedings of the National Academy of Sciences.

[3]  Ronald J. Oliversen,et al.  A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits , 2018 .

[4]  T. Guillot,et al.  Jupiter's evolution with primordial composition gradients , 2018, 1801.08149.

[5]  W. Dietrich,et al.  Anelastic spherical dynamos with radially variable electrical conductivity , 2018, 1801.03262.

[6]  T. Guillot,et al.  The Juno Mission , 2017, Space Science Reviews.

[7]  T. Guillot,et al.  Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core , 2017, 1707.01997.

[8]  J. Connerney,et al.  The analysis of initial Juno magnetometer data using a sparse magnetic field representation , 2017 .

[9]  D. Stevenson,et al.  The Fuzziness of Giant Planets’ Cores , 2017, 1704.01299.

[10]  R. Schnurr,et al.  The Juno Magnetic Field Investigation , 2017 .

[11]  Johannes Wicht,et al.  Physical conditions for Jupiter-like dynamo models , 2016, 1612.02870.

[12]  D. Stevenson,et al.  Zonal flow magnetic field interaction in the semi-conducting region of giant planets , 2016, 1703.10273.

[13]  V. Ridley,et al.  Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations , 2016 .

[14]  M. Heimpel,et al.  Explaining Jupiter's magnetic field and equatorial jet dynamics , 2014, 1407.5940.

[15]  B. Militzer,et al.  AB INITIO FREE ENERGY CALCULATIONS OF THE SOLUBILITY OF SILICA IN METALLIC HYDROGEN AND APPLICATION TO GIANT PLANET CORES , 2014 .

[16]  C. Jones,et al.  A dynamo model of Jupiter’s magnetic field , 2013 .

[17]  B. Militzer,et al.  SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS , 2013, 1303.6743.

[18]  A. Becker,et al.  AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT , 2012, The Astrophysical Journal Supplement Series.

[19]  B. Militzer,et al.  SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS , 2012 .

[20]  Burkhard Militzer,et al.  Rocky core solubility in Jupiter and giant exoplanets. , 2011, Physical review letters.

[21]  C. Jones,et al.  Planetary Magnetic Fields and Fluid Dynamos , 2011 .

[22]  S. Stanley,et al.  Effects of an outer thin stably stratified layer on planetary dynamos , 2008 .

[23]  D. Stevenson,et al.  Constraints on Deep-seated Zonal Winds Inside Jupiter and Saturn , 2007, 0711.3922.

[24]  S. Stanley,et al.  Numerical dynamo models of Uranus' and Neptune's magnetic fields , 2006 .

[25]  U. Christensen,et al.  Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .

[26]  Busse,et al.  Hemispherical dynamos generated by convection in rotating spherical shells , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  W. Nellis,et al.  Metallization and Electrical Conductivity of Hydrogen in Jupiter , 1996, Science.

[28]  Angioletta Coradini,et al.  The Juno Mission , 1989, Proceedings of the International Astronomical Union.

[29]  D. Stevenson Cosmochemistry and structure of the giant planets and their satellites , 1985 .

[30]  George E. Backus,et al.  Harmonic splines for geomagnetic modelling , 1982 .

[31]  E. Salpeter On convection and gravitational layering in Jupiter and in stars of low mass. , 1973 .

[32]  D. Stevenson Reducing the non-axisymmetry of a planetary dynamo and an application to saturn , 1982 .