Evolutionary game theory and the evolution of neuron populations, ring rates, and decisionmaking

[1]  Thomas J. Palmeri,et al.  Modeling interactions between visually-responsive and movement-related neurons in FEF during saccade visual search , 2010 .

[2]  Richard P. Heitz,et al.  Neural basis of the set-size effect in frontal eye field: timing of attention during visual search. , 2009, Journal of neurophysiology.

[3]  Philip L. Smith,et al.  An integrated theory of attention and decision making in visual signal detection. , 2009, Psychological review.

[4]  Richard P. Heitz,et al.  Biophysical support for functionally distinct cell types in the frontal eye field. , 2009, Journal of neurophysiology.

[5]  Thomas L. Vincent,et al.  Predicting relative abundance using evolutionary game theory , 2009 .

[6]  Timothy D. Hanks,et al.  Probabilistic Population Codes for Bayesian Decision Making , 2008, Neuron.

[7]  M. Shadlen,et al.  Decision-making with multiple alternatives , 2008, Nature Neuroscience.

[8]  K. Miller,et al.  One-Dimensional Dynamics of Attention and Decision Making in LIP , 2008, Neuron.

[9]  K. Doya Modulators of decision making , 2008, Nature Neuroscience.

[10]  Daeyeol Lee Game theory and neural basis of social decision making , 2008, Nature Neuroscience.

[11]  A. Sanfey Social Decision-Making : Insights from Game Theory and Neuroscience , 2022 .

[12]  T. Vincent,et al.  Adaptive dynamics with vector-valued strategies , 2007 .

[13]  M. Paré,et al.  Temporal processing of saccade targets in parietal cortex area LIP during visual search. , 2007, Journal of neurophysiology.

[14]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[15]  Lars Chittka,et al.  Visual Search and Decision Making in Bees: Time, Speed, and Accuracy , 2006, International Journal of Comparative Psychology.

[16]  Jonathan D. Cohen,et al.  The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. , 2006, Psychological review.

[17]  A. Gelperin,et al.  Speed-Accuracy Tradeoff in Olfaction , 2006, Neuron.

[18]  J. Fletcher Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics , 2006, Journal of Mammalian Evolution.

[19]  Xiao-Jing Wang,et al.  A Recurrent Network Mechanism of Time Integration in Perceptual Decisions , 2006, The Journal of Neuroscience.

[20]  Y. Cohen Evolutionary distributions in adaptive space , 2005 .

[21]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[22]  B. Goh,et al.  Ecological stability, evolutionary stability and the ESS maximum principle , 1996, Evolutionary Ecology.

[23]  Andrew Heathcote,et al.  A ballistic model of choice response time. , 2005, Psychological review.

[24]  P. Glimcher,et al.  Neuroeconomics: The Consilience of Brain and Decision , 2004, Science.

[25]  Jeffrey D Schall,et al.  On the role of frontal eye field in guiding attention and saccades , 2004, Vision Research.

[26]  W. Schultz Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology , 2004, Current Opinion in Neurobiology.

[27]  D. Barraclough,et al.  Prefrontal cortex and decision making in a mixed-strategy game , 2004, Nature Neuroscience.

[28]  Philip L. Smith,et al.  A comparison of sequential sampling models for two-choice reaction time. , 2004, Psychological review.

[29]  Philip L. Smith,et al.  Psychology and neurobiology of simple decisions , 2004, Trends in Neurosciences.

[30]  M. Nowak,et al.  Evolutionary Dynamics of Biological Games , 2004, Science.

[31]  Terrence J. Sejnowski,et al.  Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models , 1996, Journal of Computational Neuroscience.

[32]  Haim Sompolinsky,et al.  Chaos and synchrony in a model of a hypercolumn in visual cortex , 1996, Journal of Computational Neuroscience.

[33]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[34]  M. Hasselmo,et al.  High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. , 2004, Progress in brain research.

[35]  M. Shadlen,et al.  A role for neural integrators in perceptual decision making. , 2003, Cerebral cortex.

[36]  Y. Cohen Distributed predator-prey co-evolution , 2003 .

[37]  T. Vincent,et al.  An evolutionary model of carcinogenesis. , 2003, Cancer research.

[38]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[39]  Y. Cohen Distributed evolutionary games , 2003 .

[40]  Xiao-Jing Wang,et al.  Probabilistic Decision Making by Slow Reverberation in Cortical Circuits , 2002, Neuron.

[41]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[42]  Paul Glimcher,et al.  Decisions, Decisions, Decisions Choosing a Biological Science of Choice , 2002, Neuron.

[43]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[44]  Larry Samuelson,et al.  Evolution and Game Theory , 2002 .

[45]  P. Goldman-Rakic,et al.  A role for inhibition in shaping the temporal flow of information in prefrontal cortex , 2002, Nature Neuroscience.

[46]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[47]  Takashi R Sato,et al.  Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field , 2001, Neuron.

[48]  E. Damme,et al.  Non-Cooperative Games , 2000 .

[49]  R. Carpenter,et al.  The influence of urgency on decision time , 2000, Nature Neuroscience.

[50]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[51]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[52]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[53]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[54]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[55]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[56]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[57]  Thomas L. Vincent,et al.  Evolution via Strategy Dynamics , 1993 .

[58]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[59]  Yosef Cohen,et al.  Applications of Control Theory in Ecology , 1987 .

[60]  T. Vincent,et al.  A theory for the evolutionary game , 1987 .

[61]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[62]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[63]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[64]  S. Snyder,et al.  Separate Signals for Target Selection and Movement Specification in the Superior Colliculus , 2022 .