Revisiting semidefinite programming approaches to options pricing: complexity and computational perspectives
暂无分享,去创建一个
Etienne de Klerk | Didier Henrion | Milan Korda | Victor Magron | Jean-Bernard Lasserre | Felix Kirschner
[1] W. Marsden. I and J , 2012 .
[2] Jean B. Lasserre,et al. A semidefinite programming approach to the generalized problem of moments , 2007, Math. Program..
[3] Yu. V. Prokhorov. Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .
[4] Tai-Ho Wang,et al. Sharp Upper and Lower Bounds for Basket Options , 2004 .
[5] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[6] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .
[7] Tai-Ho Wang,et al. Static-arbitrage optimal subreplicating strategies for basket options , 2005 .
[8] Konrad Schmudgen,et al. The multidimensional truncated moment problem: Atoms, determinacy, and core variety , 2017, 1703.01497.
[9] Phelim P. Boyle,et al. Bounds on contingent claims based on several assets , 1997 .
[10] David M. Kreps,et al. Martingales and arbitrage in multiperiod securities markets , 1979 .
[11] Matteo Tacchi. Convergence of Lasserre's hierarchy: the general case , 2020, ArXiv.
[12] S. Pearson. Moments , 2020, Narrative inquiry in bioethics.
[13] Jiawang Nie,et al. Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..
[14] Javier Peña,et al. A Conic Programming Approach to Generalized Tchebycheff Inequalities , 2005, Math. Oper. Res..
[15] A. Lo. Semi-parametric upper bounds for option prices and expected payoffs , 1987 .
[16] E. D. Klerk,et al. A Survey of Semidefinite Programming Approaches to the Generalized Problem of Moments and Their Error Analysis , 2018, Association for Women in Mathematics Series.
[17] A. Shapiro. ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .
[18] Daniel Kuhn,et al. Distributionally robust optimization with polynomial densities: theory, models and algorithms , 2018, Mathematical Programming.
[19] J.A. Primbs. Option pricing bounds via semidefinite programming , 2006, 2006 American Control Conference.
[20] Grigoriy Blekherman,et al. The core variety and representing measures in the truncated moment problem , 2018, Journal of Operator Theory.
[21] S. Ross,et al. The valuation of options for alternative stochastic processes , 1976 .
[22] Tai-Ho Wang,et al. Static-arbitrage upper bounds for the prices of basket options , 2005 .
[23] Jean B. Lasserre,et al. A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..
[24] Ioana Popescu,et al. On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..
[25] Alexandre d'Aspremont,et al. Shape constrained optimization with applications in finance and engineering , 2004 .
[26] Mark H. A. Davis,et al. THE RANGE OF TRADED OPTION PRICES , 2007 .
[27] H. Richter. Parameterfreie Abschätzung und Realisierung von Erwartungswerten , 1957 .
[28] Defeng Sun,et al. Bounding Option Prices of Multi-Assets: A Semidefinite Programming Approach , 2005 .
[29] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.