Revisiting semidefinite programming approaches to options pricing: complexity and computational perspectives

In this paper we consider the problem of finding bounds on the prices of options depending on multiple assets without assuming any underlying model on the price dynamics, but only the absence of arbitrage opportunities. We formulate this as a generalized moment problem and utilize the well-known Moment-Sum-of-Squares (SOS) hierarchy of Lasserre to obtain bounds on the range of the possible prices. A complementary approach (also due to Lasserre) is employed for comparison. We present several numerical examples to demonstrate the viability of our approach. The framework we consider makes it possible to incorporate different kinds of observable data, such as moment information, as well as observable prices of options on the assets of interest.

[1]  W. Marsden I and J , 2012 .

[2]  Jean B. Lasserre,et al.  A semidefinite programming approach to the generalized problem of moments , 2007, Math. Program..

[3]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[4]  Tai-Ho Wang,et al.  Sharp Upper and Lower Bounds for Basket Options , 2004 .

[5]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[6]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[7]  Tai-Ho Wang,et al.  Static-arbitrage optimal subreplicating strategies for basket options , 2005 .

[8]  Konrad Schmudgen,et al.  The multidimensional truncated moment problem: Atoms, determinacy, and core variety , 2017, 1703.01497.

[9]  Phelim P. Boyle,et al.  Bounds on contingent claims based on several assets , 1997 .

[10]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[11]  Matteo Tacchi Convergence of Lasserre's hierarchy: the general case , 2020, ArXiv.

[12]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[13]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[14]  Javier Peña,et al.  A Conic Programming Approach to Generalized Tchebycheff Inequalities , 2005, Math. Oper. Res..

[15]  A. Lo Semi-parametric upper bounds for option prices and expected payoffs , 1987 .

[16]  E. D. Klerk,et al.  A Survey of Semidefinite Programming Approaches to the Generalized Problem of Moments and Their Error Analysis , 2018, Association for Women in Mathematics Series.

[17]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[18]  Daniel Kuhn,et al.  Distributionally robust optimization with polynomial densities: theory, models and algorithms , 2018, Mathematical Programming.

[19]  J.A. Primbs Option pricing bounds via semidefinite programming , 2006, 2006 American Control Conference.

[20]  Grigoriy Blekherman,et al.  The core variety and representing measures in the truncated moment problem , 2018, Journal of Operator Theory.

[21]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[22]  Tai-Ho Wang,et al.  Static-arbitrage upper bounds for the prices of basket options , 2005 .

[23]  Jean B. Lasserre,et al.  A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..

[24]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[25]  Alexandre d'Aspremont,et al.  Shape constrained optimization with applications in finance and engineering , 2004 .

[26]  Mark H. A. Davis,et al.  THE RANGE OF TRADED OPTION PRICES , 2007 .

[27]  H. Richter Parameterfreie Abschätzung und Realisierung von Erwartungswerten , 1957 .

[28]  Defeng Sun,et al.  Bounding Option Prices of Multi-Assets: A Semidefinite Programming Approach , 2005 .

[29]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.