Multi-valued F-contractions and the solutions of certain functional and integral equations

Wardowski (Fixed Point Theory Appl., 2012:94) introduced a new concept of contraction and proved a fixed point theorem which generalizes Banach contraction principle. Following this direction of research, we will present some fixed point results for closed multi-valued F-contractions or multi-valued mappings which satisfy an F-contractive condition of Hardy-Rogers-type, in the setting of complete metric spaces or complete ordered metric spaces. An example and two applications, for the solution of certain functional and integral equations, are given to illustrate the usability of the obtained results.

[1]  Cristina Di Bari,et al.  ϕ-pairs and common fixed points in cone metric spaces , 2008 .

[2]  Stojan Radenovic,et al.  Nonlinear ψ-quasi-contractions of Ćirić-type in partial metric spaces , 2012, Appl. Math. Comput..

[3]  Ismat Beg,et al.  Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces , 2010 .

[4]  Pasquale Vetro,et al.  Common fixed points in cone metric spaces , 2007 .

[5]  Juan J. Nieto,et al.  Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations , 2005, Order.

[6]  Mujahid Abbas,et al.  A SUZUKI TYPE FIXED POINT THEOREM FOR A GENERALIZED MULTIVALUED MAPPING ON PARTIAL HAUSDORFF METRIC SPACES , 2013 .

[7]  B. E. Rhoades,et al.  Fixed point theorems in generalized partially ordered G-metric spaces , 2010, Math. Comput. Model..

[8]  Pasquale Vetro,et al.  Suzukiʼs type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces , 2012 .

[9]  Juan J. Nieto,et al.  Existence and Uniqueness of Fixed Point in Partially Ordered Sets and Applications to Ordinary Differential Equations , 2007 .

[10]  A. Ran,et al.  A fixed point theorem in partially ordered sets and some applications to matrix equations , 2003 .

[11]  K. Deimling Fixed Point Theory , 2008 .

[12]  M. Cosentino,et al.  Fixed Point Results for F-Contractive Mappings of Hardy-Rogers-Type , 2014 .

[13]  Juan J. Nieto,et al.  Fixed point theorems in ordered abstract spaces , 2007 .

[14]  Ishak Altun,et al.  Some fixed point theorems on ordered cone metric spaces , 2009 .

[15]  B. Samet,et al.  Common fixed point theorems for multi-valued maps , 2012 .

[16]  C. Vetro,et al.  Common fixed points for multivalued generalized contractions on partial metric spaces , 2014 .

[17]  Richard Bellman,et al.  Functional equations in dynamic programming , 1978 .

[18]  Vasile Berinde,et al.  Common fixed points of mappings satisfying implicit contractive conditions , 2012, Fixed Point Theory and Applications.

[19]  Akbar Azam,et al.  Some Common Fixed Point Results in Cone Metric Spaces , 2009 .

[20]  Cristina Di Bari,et al.  Weakly φ-pairs and common fixed points in cone metric spaces , 2009 .

[21]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[22]  Tomonari Suzuki,et al.  A new type of fixed point theorem in metric spaces , 2009 .

[23]  Donal O'Regan,et al.  Fixed point theorems for generalized contractions in ordered metric spaces , 2008 .

[24]  Dariusz Wardowski,et al.  Fixed points of a new type of contractive mappings in complete metric spaces , 2012, Fixed Point Theory and Applications.

[25]  S. Nadler Multi-valued contraction mappings. , 1969 .

[26]  Ismat Beg,et al.  Common fixed points of two maps in cone metric spaces , 2008 .