The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae

Several thousand core-collapse supernovae (CCSNe) of different flavors have been discovered so far. However, identifying their progenitors has remained an outstanding open question in astrophysics. Studies of SN host galaxies have proven to be powerful in providing constraints on the progenitor populations. In this paper, we present all CCSNe detected between 2009 and 2017 by the Palomar Transient Factory. This sample includes 888 SNe of 12 distinct classes out to redshift z ≈ 1. We present the photometric properties of their host galaxies from the far-ultraviolet to the mid-infrared and model the host-galaxy spectral energy distributions to derive physical properties. The galaxy mass function of Type Ic, Ib, IIb, II, and IIn SNe ranges from 105 to 1011.5 M ⊙, probing the entire mass range of star-forming galaxies down to the least-massive star-forming galaxies known. Moreover, the galaxy mass distributions are consistent with models of star-formation-weighted mass functions. Regular CCSNe are hence direct tracers of star formation. Small but notable differences exist between some of the SN classes. Type Ib/c SNe prefer galaxies with slightly higher masses (i.e., higher metallicities) and star formation rates than Type IIb and II SNe. These differences are less pronounced than previously thought. H-poor superluminous supernovae (SLSNe) and SNe Ic-BL are scarce in galaxies above 1010 M ⊙. Their progenitors require environments with metallicities of < 0.4 and < 1 solar, respectively. In addition, the hosts of H-poor SLSNe are dominated by a younger stellar population than all other classes of CCSNe. Our findings corroborate the notion that low metallicity and young age play an important role in the formation of SLSN progenitors.

[1]  J. Sollerman,et al.  Type Ic supernovae from the (intermediate) Palomar Transient Factory , 2018, Astronomy & Astrophysics.

[2]  Adam A. Miller,et al.  The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics , 2020, The Astrophysical Journal.

[3]  Tucson,et al.  PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  Adam A. Miller,et al.  An extremely energetic supernova from a very massive star in a dense medium , 2020, Nature Astronomy.

[5]  K. Kawabata,et al.  A type Ia supernova at the heart of superluminous transient SN 2006gy , 2020, Science.

[6]  A. Mahabal,et al.  The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs , 2019, The Astrophysical Journal.

[7]  E. Ofek,et al.  Type IIn supernova light-curve properties measured from an untargeted survey sample , 2019, Astronomy & Astrophysics.

[8]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  D. Perley,et al.  Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production , 2019, The Astrophysical Journal.

[10]  J. Neill,et al.  On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host , 2019, The Astrophysical Journal.

[11]  D. Perley,et al.  Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  Benjamin D. Johnson,et al.  Prospector: Stellar population inference from spectra and SEDs , 2019 .

[13]  Richard Walters,et al.  The Zwicky Transient Facility: Surveys and Scheduler , 2019, Publications of the Astronomical Society of the Pacific.

[14]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[15]  Marek Kowalski,et al.  simsurvey: estimating transient discovery rates for the Zwicky transient facility , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[17]  Pieter van Dokkum,et al.  A New View of the Size–Mass Distribution of Galaxies: Using r20 and r80 Instead of r50 , 2019, The Astrophysical Journal.

[18]  A. V. D. Wel,et al.  A Mass-dependent Slope of the Galaxy Size–Mass Relation out to z ∼ 3: Further Evidence for a Direct Relation between Median Galaxy Size and Median Halo Mass , 2019, The Astrophysical Journal.

[19]  C. McCully,et al.  Type Ibn Supernovae May not all Come from Massive Stars , 2019, The Astrophysical Journal.

[20]  R. Nichol,et al.  Superluminous supernovae from the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  A. Gal-yam The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.

[22]  Christopher D. Martin,et al.  Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind , 2018, The Astrophysical Journal.

[23]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[24]  R. Lupton,et al.  First Release of High-Redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). I. Photometric Properties , 2018, The Astrophysical Journal Supplement Series.

[25]  Nozomu Tominaga,et al.  First Release of High-redshift Superluminous Supernovae from the Subaru HIgh-Z SUpernova CAmpaign (SHIZUCA). II. Spectroscopic Properties , 2018, The Astrophysical Journal Supplement Series.

[26]  D. A. Kann,et al.  Highly luminous supernovae associated with gamma-ray bursts , 2016, Astronomy & Astrophysics.

[27]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.

[28]  E. Ofek,et al.  A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary , 2018, Science.

[29]  Wei Zheng,et al.  The Berkeley sample of stripped-envelope supernovae , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  P. Vreeswijk,et al.  A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova , 2018, Nature Astronomy.

[31]  J. Sollerman,et al.  Oxygen and helium in stripped-envelope supernovae , 2018, Astronomy & Astrophysics.

[32]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[33]  M. Sullivan,et al.  Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2018, 1802.07820.

[34]  W. M. Wood-Vasey,et al.  PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation , 2018, 1802.01589.

[35]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[36]  D. A. Kann,et al.  The environment of the SN-less GRB 111005A at z = 0.0133 , 2017, Astronomy & Astrophysics.

[37]  E. Ofek,et al.  Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.

[38]  D. Malesani,et al.  Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.

[39]  A. J. van der Horst,et al.  The second-closest gamma-ray burst: sub-luminous GRB 111005A with no supernova in a super-solar metallicity environment , 2016, Astronomy & Astrophysics.

[40]  R. Nichol,et al.  Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two , 2017, 1712.04535.

[41]  Armin Rest,et al.  SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium , 2017, 1712.00027.

[42]  V. Dyk,et al.  Supernova Progenitors Observed with HST , 2017 .

[43]  E. Ofek,et al.  Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star , 2017, Nature.

[44]  UK.,et al.  Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.

[45]  S. Smartt,et al.  Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm , 2017, 1708.04618.

[46]  D. A. Kann,et al.  The host of the Type I SLSN 2017egm: A young, sub-solar metallicity environment in a massive spiral galaxy , 2017, 1708.03856.

[47]  J. Prieto,et al.  Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy , 2017, 1708.00864.

[48]  R. Nichol,et al.  DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.

[49]  E. Berger,et al.  The Superluminous Supernova SN 2017egm in the Nearby Galaxy NGC 3191: A Metal-rich Environment Can Support a Typical SLSN Evolution , 2017, 1706.08517.

[50]  Luciana Bianchi,et al.  Revised Catalog of GALEX Ultraviolet Sources. I. The All-Sky Survey: GUVcat_AIS , 2017, 1704.05903.

[51]  E. Ofek,et al.  Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory , 2017, 1704.05061.

[52]  J. DeRose,et al.  Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory’s Transient Discovery Pipeline , 2017, 1704.02951.

[53]  S. D. Mink,et al.  Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction , 2017, 1701.07032.

[54]  William H. Lee,et al.  Confined dense circumstellar material surrounding a regular type II supernova , 2017, Nature Physics.

[55]  F. Mannucci,et al.  The chemical enrichment of long gamma-ray bursts nurseries up to z = 2 , 2017, 1701.02312.

[56]  S. Smartt,et al.  Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.

[57]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[58]  Benjamin D. Johnson,et al.  Nebular Continuum and Line Emission in Stellar Population Synthesis Models , 2016, 1611.08305.

[59]  Benjamin D. Johnson,et al.  Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe , 2016, 1609.09073.

[60]  J. Maund,et al.  Core-collapse supernova progenitor constraints using the spatial distributions of massive stars in local galaxies , 2016, 1608.06097.

[61]  E. Ofek,et al.  Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light , 2016, 1608.01998.

[62]  D. Malesani,et al.  SN 2015bh: NGC 2770's 4th supernova or a luminous blue variable on its way to a Wolf-Rayet star? , 2016, 1606.09025.

[63]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[64]  P. Vreeswijk,et al.  iPTF15dtg: a double-peaked Type Ic Supernova from a massive progenitor , 2016, 1605.02491.

[65]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[66]  Z. Cano,et al.  The Observer's Guide to the Gamma-Ray Burst-Supernova Connection , 2016, 1604.03549.

[67]  A. Hopkins,et al.  Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .

[68]  D. Lang,et al.  FULL-DEPTH COADDS OF THE WISE AND FIRST-YEAR NEOWISE-REACTIVATION IMAGES , 2016, 1603.05664.

[69]  A. Fruchter,et al.  A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae , 2016, 1601.01874.

[70]  M. Turatto,et al.  Supernovae and their host galaxies – III. The impact of bars and bulges on the radial distribution of supernovae in disc galaxies , 2015, 1511.08896.

[71]  M. Sullivan,et al.  FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE , 2015, 1512.00846.

[72]  M. Sullivan,et al.  TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.

[73]  O. Graur,et al.  ANALYZING THE LARGEST SPECTROSCOPIC DATA SET OF STRIPPED SUPERNOVAE TO IMPROVE THEIR IDENTIFICATIONS AND CONSTRAIN THEIR PROGENITORS , 2015, 1510.08049.

[74]  O. Graur,et al.  THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.

[75]  E. Ofek,et al.  DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA , 2015, 1508.04420.

[76]  Hai-liang Chen,et al.  Population synthesis of accreting white dwarfs – II. X-ray and UV emission , 2015, 1508.03194.

[77]  William H. Lee,et al.  OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A , 2015, 1508.00575.

[78]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[79]  D. A. Kann,et al.  GRB hosts through cosmic time - VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 , 2015, 1505.06743.

[80]  J. Sollerman,et al.  Metallicity at the explosion sites of interacting transients , 2015, 1505.04719.

[81]  J. Fynbo,et al.  GRB 140606B/iPTF14bfu: Detection of shock-breakout emission from a cosmological γ -ray burst? , 2015, 1505.03522.

[82]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[83]  J. Fynbo,et al.  THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT ∼6 , 2015, 1503.04246.

[84]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[85]  L. Kewley,et al.  A TURNOVER IN THE GALAXY MAIN SEQUENCE OF STAR FORMATION AT M* ∼ 1010 M☉ FOR REDSHIFTS z < 1.3 , 2015, 1501.01080.

[86]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[87]  F. Mannucci,et al.  Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs I. Stellar mass at z < 1 ? , 2014, 1409.7064.

[88]  David O. Jones,et al.  ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE HST , 2014, 1411.1060.

[89]  A. U. Postigo,et al.  A young stellar environment for the superluminous supernova PTF12dam , 2014, 1411.1104.

[90]  E. Ofek,et al.  THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION , 2014, 1409.8287.

[91]  L. Galbany,et al.  Nearby supernova host galaxies from the CALIFA Survey , 2014, 1603.07808.

[92]  T. A. Nazaryan,et al.  Supernovae and their host galaxies – II. The relative frequencies of supernovae types in spirals , 2014, 1407.6896.

[93]  T. Grav,et al.  INITIAL PERFORMANCE OF THE NEOWISE REACTIVATION MISSION , 2014, 1406.6025.

[94]  E. Ofek,et al.  Optical follow-up observations of PTF10qts, a luminous broad-lined Type Ic supernova found by the Palomar Transient Factory , 2014, 1405.5237.

[95]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[96]  Carl J. Grillmair,et al.  IPAC Image Processing and Data Archiving for the Palomar Transient Factory , 2014, 1404.1953.

[97]  D. Lang unWISE: UNBLURRED COADDS OF THE WISE IMAGING , 2014, 1405.0308.

[98]  S. Jha,et al.  OPTICAL SPECTRA OF 73 STRIPPED-ENVELOPE CORE-COLLAPSE SUPERNOVAE , 2014, 1405.1910.

[99]  S. B. Cenko,et al.  The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star , 2014, 1403.6708.

[100]  A. Filippenko,et al.  THE HOST GALAXIES OF FAST-EJECTA CORE-COLLAPSE SUPERNOVAE , 2014, 1401.0729.

[101]  B. Shiao,et al.  The ultraviolet sky: An overview from the GALEX surveys , 2013, 1312.3281.

[102]  Peter E. Nugent,et al.  iPTF13beo: the double-peaked light curve of a Type Ibn supernova discovered shortly after explosion , 2013, 1312.0012.

[103]  E. Ofek,et al.  SN 2010MB: DIRECT EVIDENCE FOR A SUPERNOVA INTERACTING WITH A LARGE AMOUNT OF HYDROGEN-FREE CIRCUMSTELLAR MATERIAL , 2013, 1309.6496.

[104]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[105]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[106]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[107]  P. Astier,et al.  TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.

[108]  J. Sollerman,et al.  A metallicity study of 1987A-like supernova host galaxies , 2013, 1308.5545.

[109]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[110]  D. Frail,et al.  A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT , 2013, 1307.2366.

[111]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[112]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[113]  Bruce C. Bigelow,et al.  FIRE: A Facility Class Near-Infrared Echelle Spectrometer for the Magellan Telescopes , 2013 .

[114]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[115]  E. Ofek,et al.  An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.

[116]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[117]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[118]  J. Prieto,et al.  PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE , 2012, 1205.2338.

[119]  A. Gal-yam Luminous Supernovae , 2012, Science.

[120]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[121]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[122]  E. Berger,et al.  A SPECTROSCOPIC STUDY OF TYPE Ibc SUPERNOVA HOST GALAXIES FROM UNTARGETED SURVEYS , 2012, 1206.2643.

[123]  E. Ofek,et al.  The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.

[124]  J. Anderson,et al.  A Central Excess of Stripped-Envelope Supernovae within Disturbed Galaxies , 2012, 1205.6732.

[125]  J. Anderson,et al.  Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formation⋆ , 2012, 1205.3802.

[126]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[127]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[128]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[129]  D. Elbaz,et al.  THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z < 2 , 2012, 1202.0290.

[130]  D. Frail,et al.  EVIDENCE FOR A COMPACT WOLF–RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv , 2011, 1110.5618.

[131]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[132]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[133]  R. Manuputy,et al.  X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope , 2011, 1110.1944.

[134]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[135]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[136]  D. Frail,et al.  SN 2010jp (PTF10aaxi): A Jet-driven Type II Supernova , 2011, Proceedings of the International Astronomical Union.

[137]  J. Fynbo,et al.  The properties of SN Ib/c locations , 2011, 1102.2249.

[138]  D. Frail,et al.  PTF 10bzf (SN 2010ah): A BROAD-LINE Ic SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY , 2011, 1101.4208.

[139]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[140]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[141]  R. Nichol,et al.  THE EFFECT OF PECULIAR VELOCITIES ON SUPERNOVA COSMOLOGY , 2010, 1012.2912.

[142]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[143]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[144]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[145]  J. Anderson,et al.  TYPE Ibc SUPERNOVAE IN DISTURBED GALAXIES: EVIDENCE FOR A TOP-HEAVY INITIAL MASS FUNCTION , 2010, 1005.0511.

[146]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[147]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[148]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[149]  J. Fynbo,et al.  Do Wolf-Rayet stars have similar locations in hosts as type Ib/c supernovae and long gamma-ray bursts? , 2010, 1002.3164.

[150]  A. J. Levan,et al.  The host galaxies of core‐collapse supernovae and gamma‐ray bursts , 2010, 1001.5042.

[151]  J. Neill,et al.  THE EXTREME HOSTS OF EXTREME SUPERNOVAE , 2010, 1011.3512.

[152]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[153]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[154]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[155]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[156]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[157]  A. McConnachie,et al.  Compact groups in theory and practice – III. Compact groups of galaxies in the Sixth Data Release of the Sloan Digital Sky Survey , 2008, 0812.1580.

[158]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[159]  Tibor Agócs,et al.  ACAM: a new imager/spectrograph for the William Herschel Telescope , 2008, Astronomical Telescopes + Instrumentation.

[160]  M. Turatto,et al.  Early-type galaxies with core collapse supernovae , 2008, 0806.4269.

[161]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[162]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[163]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[164]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[165]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[166]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[167]  C. Conselice,et al.  AEGIS: Star formation in field galaxies since z=1.1 . Dominance of gradually declining over episodic star formation , 2007 .

[168]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[169]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[170]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[171]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[172]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[173]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[174]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[175]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[176]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[177]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[178]  B. Garilli,et al.  The VIMOS-VLT deep survey - Evolution of the galaxy luminosity function up to z = 2 in first epoch data , 2004, astro-ph/0409134.

[179]  The SAI catalog of supernovae and radial distributions of supernovae of various types in galaxies , 2004 .

[180]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[181]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[182]  Christophe Bonnaud,et al.  SNIFS: a wideband integral field spectrograph with microlens arrays , 2003, SPIE Optical Systems Design.

[183]  Pasadena,et al.  On the relative frequencies of core-collapse supernovae sub-types: The role of progenitor metallicity , 2003, astro-ph/0305376.

[184]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[185]  Bruce C. Bigelow,et al.  IMACS, the multiobject spectrograph and imager for Magellan: a status report , 2003, SPIE Astronomical Telescopes + Instrumentation.

[186]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[187]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[188]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[189]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[190]  M. Mateo DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[191]  Phillip J. MacQueen,et al.  Hobby-Eberly Telescope low-resolution spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[192]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[193]  S. Bergh Distribution of Supernovae in Spiral Galaxies , 1996, astro-ph/9611025.

[194]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[195]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[196]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[197]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[198]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[199]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[200]  G. Vaucouleurs Magnitudes and Colors of the Magellanic Clouds. , 1960 .